Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoProcessor, BlipForConditionalGeneration, AutoTokenizer,SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
import librosa | |
import numpy as np | |
import torch | |
import image_text_model as itm | |
import audio_model as am | |
import open_clip | |
#CONSTANTS | |
def generate_captions_speech(image): | |
caption_blip_large = itm.generate_caption(itm.blip_processor_large, itm.blip_model_large, image) | |
print('generate_captions>>>'+caption_blip_large) | |
speech=am.synthesize_speech(caption_blip_large) | |
return caption_blip_large,gr.Audio.update(value=(16000, speech.cpu().numpy())) | |
# Define la interfaz de usuario utilizando Gradio entradas y salidas | |
inputsImg = [ | |
gr.Image(type="pil", label="Imagen"), | |
] | |
#Salidas es lo que genera de tetxo y el audio | |
outputs = [ gr.Textbox(label="Caption generated by BLIP-large"),gr.Audio(type="numpy",label='Transcripcion')] | |
title = "Clasificaci贸n de imagen a texto y conversi贸n de texto a voz" | |
description = "Carga una imagen y obt茅n una descripci贸n de texto de lo que contiene la imagen, as铆 como un archivo de audio de la trasncripcion de la imagen en audio descrito." | |
examples = [] | |
interface = gr.Interface(fn=generate_captions_speech, | |
inputs=inputsImg, | |
outputs=outputs, | |
examples=examples, | |
title=title, | |
description=description) | |
interface.launch() |