from transformers import AutoProcessor, BlipForConditionalGeneration, AutoTokenizer import librosa import numpy as np import torch import open_clip # Carga el modelo de clasificación de imagen a texto blip_processor_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large") blip_model_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") device = "cuda" if torch.cuda.is_available() else "cpu" blip_model_large.to(device) ##### IMAGE MODEL TO TEXT, MODEL 1 def generate_caption(processor, model, image, tokenizer=None, use_float_16=False): inputs = processor(images=image, return_tensors="pt").to(device) if use_float_16: inputs = inputs.to(torch.float16) generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50) if tokenizer is not None: generated_caption = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] else: generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_caption def generate_caption_coca(model, transform, image): im = transform(image).unsqueeze(0).to(device) with torch.no_grad(), torch.cuda.amp.autocast(): generated = model.generate(im, seq_len=20) return open_clip.decode(generated[0].detach()).split("")[0].replace("", "") #####END IMAGE MODEL TO TEXT