Spaces:
Runtime error
Runtime error
File size: 8,203 Bytes
5aa3fcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from ..modules import (
AxialTransformerLayer,
LearnedPositionalEmbedding,
RobertaLMHead,
ESM1bLayerNorm,
ContactPredictionHead,
)
from ..axial_attention import RowSelfAttention, ColumnSelfAttention
class MSATransformer(nn.Module):
@classmethod
def add_args(cls, parser):
# fmt: off
parser.add_argument(
"--num_layers",
default=12,
type=int,
metavar="N",
help="number of layers"
)
parser.add_argument(
"--embed_dim",
default=768,
type=int,
metavar="N",
help="embedding dimension"
)
parser.add_argument(
"--logit_bias",
action="store_true",
help="whether to apply bias to logits"
)
parser.add_argument(
"--ffn_embed_dim",
default=3072,
type=int,
metavar="N",
help="embedding dimension for FFN",
)
parser.add_argument(
"--attention_heads",
default=12,
type=int,
metavar="N",
help="number of attention heads",
)
parser.add_argument(
"--dropout",
default=0.1,
type=float,
help="Dropout to apply."
)
parser.add_argument(
"--attention_dropout",
default=0.1,
type=float,
help="Dropout to apply."
)
parser.add_argument(
"--activation_dropout",
default=0.1,
type=float,
help="Dropout to apply."
)
parser.add_argument(
"--max_tokens_per_msa",
default=2 ** 14,
type=int,
help=(
"Used during inference to batch attention computations in a single "
"forward pass. This allows increased input sizes with less memory."
),
)
# fmt: on
def __init__(self, args, alphabet):
super().__init__()
self.args = args
self.alphabet_size = len(alphabet)
self.padding_idx = alphabet.padding_idx
self.mask_idx = alphabet.mask_idx
self.cls_idx = alphabet.cls_idx
self.eos_idx = alphabet.eos_idx
self.prepend_bos = alphabet.prepend_bos
self.append_eos = alphabet.append_eos
self.embed_tokens = nn.Embedding(
self.alphabet_size, self.args.embed_dim, padding_idx=self.padding_idx
)
if getattr(self.args, "embed_positions_msa", False):
emb_dim = getattr(self.args, "embed_positions_msa_dim", self.args.embed_dim)
self.msa_position_embedding = nn.Parameter(
0.01 * torch.randn(1, 1024, 1, emb_dim),
requires_grad=True,
)
else:
self.register_parameter("msa_position_embedding", None)
self.dropout_module = nn.Dropout(self.args.dropout)
self.layers = nn.ModuleList(
[
AxialTransformerLayer(
self.args.embed_dim,
self.args.ffn_embed_dim,
self.args.attention_heads,
self.args.dropout,
self.args.attention_dropout,
self.args.activation_dropout,
getattr(self.args, "max_tokens_per_msa", self.args.max_tokens),
)
for _ in range(self.args.layers)
]
)
self.contact_head = ContactPredictionHead(
self.args.layers * self.args.attention_heads,
self.prepend_bos,
self.append_eos,
eos_idx=self.eos_idx,
)
self.embed_positions = LearnedPositionalEmbedding(
self.args.max_positions,
self.args.embed_dim,
self.padding_idx,
)
self.emb_layer_norm_before = ESM1bLayerNorm(self.args.embed_dim)
self.emb_layer_norm_after = ESM1bLayerNorm(self.args.embed_dim)
self.lm_head = RobertaLMHead(
embed_dim=self.args.embed_dim,
output_dim=self.alphabet_size,
weight=self.embed_tokens.weight,
)
def forward(self, tokens, repr_layers=[], need_head_weights=False, return_contacts=False):
if return_contacts:
need_head_weights = True
assert tokens.ndim == 3
batch_size, num_alignments, seqlen = tokens.size()
padding_mask = tokens.eq(self.padding_idx) # B, R, C
if not padding_mask.any():
padding_mask = None
x = self.embed_tokens(tokens)
x += self.embed_positions(tokens.view(batch_size * num_alignments, seqlen)).view(x.size())
if self.msa_position_embedding is not None:
if x.size(1) > 1024:
raise RuntimeError(
"Using model with MSA position embedding trained on maximum MSA "
f"depth of 1024, but received {x.size(1)} alignments."
)
x += self.msa_position_embedding[:, :num_alignments]
x = self.emb_layer_norm_before(x)
x = self.dropout_module(x)
if padding_mask is not None:
x = x * (1 - padding_mask.unsqueeze(-1).type_as(x))
repr_layers = set(repr_layers)
hidden_representations = {}
if 0 in repr_layers:
hidden_representations[0] = x
if need_head_weights:
row_attn_weights = []
col_attn_weights = []
# B x R x C x D -> R x C x B x D
x = x.permute(1, 2, 0, 3)
for layer_idx, layer in enumerate(self.layers):
x = layer(
x,
self_attn_padding_mask=padding_mask,
need_head_weights=need_head_weights,
)
if need_head_weights:
x, col_attn, row_attn = x
# H x C x B x R x R -> B x H x C x R x R
col_attn_weights.append(col_attn.permute(2, 0, 1, 3, 4))
# H x B x C x C -> B x H x C x C
row_attn_weights.append(row_attn.permute(1, 0, 2, 3))
if (layer_idx + 1) in repr_layers:
hidden_representations[layer_idx + 1] = x.permute(2, 0, 1, 3)
x = self.emb_layer_norm_after(x)
x = x.permute(2, 0, 1, 3) # R x C x B x D -> B x R x C x D
# last hidden representation should have layer norm applied
if (layer_idx + 1) in repr_layers:
hidden_representations[layer_idx + 1] = x
x = self.lm_head(x)
result = {"logits": x, "representations": hidden_representations}
if need_head_weights:
# col_attentions: B x L x H x C x R x R
col_attentions = torch.stack(col_attn_weights, 1)
# row_attentions: B x L x H x C x C
row_attentions = torch.stack(row_attn_weights, 1)
result["col_attentions"] = col_attentions
result["row_attentions"] = row_attentions
if return_contacts:
contacts = self.contact_head(tokens, row_attentions)
result["contacts"] = contacts
return result
def predict_contacts(self, tokens):
return self(tokens, return_contacts=True)["contacts"]
@property
def num_layers(self):
return self.args.layers
def max_tokens_per_msa_(self, value: int) -> None:
"""The MSA Transformer automatically batches attention computations when
gradients are disabled to allow you to pass in larger MSAs at test time than
you can fit in GPU memory. By default this occurs when more than 2^14 tokens
are passed in the input MSA. You can set this value to infinity to disable
this behavior.
"""
for module in self.modules():
if isinstance(module, (RowSelfAttention, ColumnSelfAttention)):
module.max_tokens_per_msa = value |