File size: 14,118 Bytes
5aa3fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from .multihead_attention import MultiheadAttention  # noqa
from .axial_attention import ColumnSelfAttention, RowSelfAttention


def gelu(x):
    """Implementation of the gelu activation function.
    For information: OpenAI GPT's gelu is slightly different
    (and gives slightly different results):
    0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def symmetrize(x):
    "Make layer symmetric in final two dimensions, used for contact prediction."
    return x + x.transpose(-1, -2)


def apc(x):
    "Perform average product correct, used for contact prediction."
    a1 = x.sum(-1, keepdims=True)
    a2 = x.sum(-2, keepdims=True)
    a12 = x.sum((-1, -2), keepdims=True)

    avg = a1 * a2
    avg.div_(a12)  # in-place to reduce memory
    normalized = x - avg
    return normalized


class ESM1LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12, affine=True):
        """Construct a layernorm layer in the TF style (eps inside the sqrt)."""
        super().__init__()
        self.hidden_size = (hidden_size,) if isinstance(hidden_size, int) else tuple(hidden_size)
        self.eps = eps
        self.affine = bool(affine)
        if self.affine:
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
        else:
            self.weight, self.bias = None, None

    def forward(self, x):
        dims = tuple(-(i + 1) for i in range(len(self.hidden_size)))
        means = x.mean(dims, keepdim=True)
        x_zeromean = x - means
        variances = x_zeromean.pow(2).mean(dims, keepdim=True)
        x = x_zeromean / torch.sqrt(variances + self.eps)
        if self.affine:
            x = (self.weight * x) + self.bias
        return x


try:
    from apex.normalization import FusedLayerNorm as _FusedLayerNorm

    class ESM1bLayerNorm(_FusedLayerNorm):
        @torch.jit.unused
        def forward(self, x):
            if not x.is_cuda:
                return super().forward(x)
            else:
                with torch.cuda.device(x.device):
                    return super().forward(x)

except ImportError:
    from torch.nn import LayerNorm as ESM1bLayerNorm


class TransformerLayer(nn.Module):
    """Transformer layer block."""

    def __init__(
        self,
        embed_dim,
        ffn_embed_dim,
        attention_heads,
        add_bias_kv=True,
        use_esm1b_layer_norm=False,
        use_rotary_embeddings: bool = False,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.ffn_embed_dim = ffn_embed_dim
        self.attention_heads = attention_heads
        self.use_rotary_embeddings = use_rotary_embeddings
        self._init_submodules(add_bias_kv, use_esm1b_layer_norm)

    def _init_submodules(self, add_bias_kv, use_esm1b_layer_norm):
        BertLayerNorm = ESM1bLayerNorm if use_esm1b_layer_norm else ESM1LayerNorm

        self.self_attn = MultiheadAttention(
            self.embed_dim,
            self.attention_heads,
            add_bias_kv=add_bias_kv,
            add_zero_attn=False,
            use_rotary_embeddings=self.use_rotary_embeddings,
        )
        self.self_attn_layer_norm = BertLayerNorm(self.embed_dim)

        self.fc1 = nn.Linear(self.embed_dim, self.ffn_embed_dim)
        self.fc2 = nn.Linear(self.ffn_embed_dim, self.embed_dim)

        self.final_layer_norm = BertLayerNorm(self.embed_dim)

    def forward(
        self, x, self_attn_mask=None, self_attn_padding_mask=None, need_head_weights=False
    ):
        residual = x
        x = self.self_attn_layer_norm(x)
        x, attn = self.self_attn(
            query=x,
            key=x,
            value=x,
            key_padding_mask=self_attn_padding_mask,
            need_weights=True,
            need_head_weights=need_head_weights,
            attn_mask=self_attn_mask,
        )
        x = residual + x

        residual = x
        x = self.final_layer_norm(x)
        x = gelu(self.fc1(x))
        x = self.fc2(x)
        x = residual + x
        #print(f'------{attn.half().dtype}-----')

        return x, attn#.half() ###


class AxialTransformerLayer(nn.Module):
    """Implements an Axial MSA Transformer block."""

    def __init__(
        self,
        embedding_dim: int = 768,
        ffn_embedding_dim: int = 3072,
        num_attention_heads: int = 8,
        dropout: float = 0.1,
        attention_dropout: float = 0.1,
        activation_dropout: float = 0.1,
        max_tokens_per_msa: int = 2**14,
    ) -> None:
        super().__init__()

        # Initialize parameters
        self.embedding_dim = embedding_dim
        self.dropout_prob = dropout

        row_self_attention = RowSelfAttention(
            embedding_dim,
            num_attention_heads,
            dropout=dropout,
            max_tokens_per_msa=max_tokens_per_msa,
        )

        column_self_attention = ColumnSelfAttention(
            embedding_dim,
            num_attention_heads,
            dropout=dropout,
            max_tokens_per_msa=max_tokens_per_msa,
        )

        feed_forward_layer = FeedForwardNetwork(
            embedding_dim,
            ffn_embedding_dim,
            activation_dropout=activation_dropout,
            max_tokens_per_msa=max_tokens_per_msa,
        )

        self.row_self_attention = self.build_residual(row_self_attention)
        self.column_self_attention = self.build_residual(column_self_attention)
        self.feed_forward_layer = self.build_residual(feed_forward_layer)

    def build_residual(self, layer: nn.Module):
        return NormalizedResidualBlock(
            layer,
            self.embedding_dim,
            self.dropout_prob,
        )

    def forward(
        self,
        x: torch.Tensor,
        self_attn_mask: Optional[torch.Tensor] = None,
        self_attn_padding_mask: Optional[torch.Tensor] = None,
        need_head_weights: bool = False,
    ):
        """
        LayerNorm is applied either before or after the self-attention/ffn
        modules similar to the original Transformer implementation.
        """
        x, row_attn = self.row_self_attention(
            x,
            self_attn_mask=self_attn_mask,
            self_attn_padding_mask=self_attn_padding_mask,
        )
        x, column_attn = self.column_self_attention(
            x,
            self_attn_mask=self_attn_mask,
            self_attn_padding_mask=self_attn_padding_mask,
        )
        x = self.feed_forward_layer(x)
        if need_head_weights:
            return x, column_attn, row_attn
        else:
            return x


class LearnedPositionalEmbedding(nn.Embedding):
    """
    This module learns positional embeddings up to a fixed maximum size.
    Padding ids are ignored by either offsetting based on padding_idx
    or by setting padding_idx to None and ensuring that the appropriate
    position ids are passed to the forward function.
    """

    def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int):
        if padding_idx is not None:
            num_embeddings_ = num_embeddings + padding_idx + 1
        else:
            num_embeddings_ = num_embeddings
        super().__init__(num_embeddings_, embedding_dim, padding_idx)
        self.max_positions = num_embeddings

    def forward(self, input: torch.Tensor):
        """Input is expected to be of size [bsz x seqlen]."""
        if input.size(1) > self.max_positions:
            raise ValueError(
                f"Sequence length {input.size(1)} above maximum "
                f" sequence length of {self.max_positions}"
            )
        mask = input.ne(self.padding_idx).int()
        positions = (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + self.padding_idx
        return F.embedding(
            positions,
            self.weight,
            self.padding_idx,
            self.max_norm,
            self.norm_type,
            self.scale_grad_by_freq,
            self.sparse,
        )


class SinusoidalPositionalEmbedding(nn.Module):
    def __init__(self, embed_dim, padding_idx, learned=False):
        super().__init__()
        self.embed_dim = embed_dim
        self.padding_idx = padding_idx
        self.register_buffer("_float_tensor", torch.FloatTensor(1))
        self.weights = None

    def forward(self, x):
        bsz, seq_len = x.shape
        max_pos = self.padding_idx + 1 + seq_len
        if self.weights is None or max_pos > self.weights.size(0):
            self.weights = self.get_embedding(max_pos)
        self.weights = self.weights.type_as(self._float_tensor)

        positions = self.make_positions(x)
        return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach()

    def make_positions(self, x):
        mask = x.ne(self.padding_idx)
        range_buf = torch.arange(x.size(1), device=x.device).expand_as(x) + self.padding_idx + 1
        positions = range_buf.expand_as(x)
        return positions * mask.long() + self.padding_idx * (1 - mask.long())

    def get_embedding(self, num_embeddings):
        half_dim = self.embed_dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
        emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
        if self.embed_dim % 2 == 1:
            # zero pad
            emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
        if self.padding_idx is not None:
            emb[self.padding_idx, :] = 0
        return emb


class RobertaLMHead(nn.Module):
    """Head for masked language modeling."""

    def __init__(self, embed_dim, output_dim, weight):
        super().__init__()
        self.dense = nn.Linear(embed_dim, embed_dim)
        self.layer_norm = ESM1bLayerNorm(embed_dim)
        self.weight = weight
        self.bias = nn.Parameter(torch.zeros(output_dim))

    def forward(self, features):
        x = self.dense(features)
        x = gelu(x)
        x = self.layer_norm(x)
        # project back to size of vocabulary with bias
        x = F.linear(x, self.weight) + self.bias
        return x


class ContactPredictionHead(nn.Module):
    """Performs symmetrization, apc, and computes a logistic regression on the output features"""

    def __init__(
        self,
        in_features: int,
        prepend_bos: bool,
        append_eos: bool,
        bias=True,
        eos_idx: Optional[int] = None,
    ):
        super().__init__()
        self.in_features = in_features
        self.prepend_bos = prepend_bos
        self.append_eos = append_eos
        if append_eos and eos_idx is None:
            raise ValueError("Using an alphabet with eos token, but no eos token was passed in.")
        self.eos_idx = eos_idx
        self.regression = nn.Linear(in_features, 1, bias)
        self.activation = nn.Sigmoid()

    def forward(self, tokens, attentions):
        # remove eos token attentions
        if self.append_eos:
            eos_mask = tokens.ne(self.eos_idx).to(attentions)
            eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
            attentions = attentions * eos_mask[:, None, None, :, :]
            attentions = attentions[..., :-1, :-1]
        # remove cls token attentions
        if self.prepend_bos:
            attentions = attentions[..., 1:, 1:]
        batch_size, layers, heads, seqlen, _ = attentions.size()
        attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)

        # features: B x C x T x T
        attentions = attentions.to(
            self.regression.weight.device
        ) # attentions always float32, may need to convert to float16
        attentions = apc(symmetrize(attentions))
        attentions = attentions.permute(0, 2, 3, 1)
        #print(f'----------{attentions.dtype, attentions.float().dtype}----') 
        return attentions.sum(dim=-1), self.activation(self.regression(attentions).squeeze(3))#float().to(self.regression.weight.device)).squeeze(3))


class NormalizedResidualBlock(nn.Module):
    def __init__(
        self,
        layer: nn.Module,
        embedding_dim: int,
        dropout: float = 0.1,
    ):
        super().__init__()
        self.embedding_dim = embedding_dim

        self.layer = layer
        self.dropout_module = nn.Dropout(
            dropout,
        )
        self.layer_norm = ESM1bLayerNorm(self.embedding_dim)

    def forward(self, x, *args, **kwargs):
        residual = x
        x = self.layer_norm(x)
        outputs = self.layer(x, *args, **kwargs)
        if isinstance(outputs, tuple):
            x, *out = outputs
        else:
            x = outputs
            out = None

        x = self.dropout_module(x)
        x = residual + x

        if out is not None:
            return (x,) + tuple(out)
        else:
            return x


class FeedForwardNetwork(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        ffn_embedding_dim: int,
        activation_dropout: float = 0.1,
        max_tokens_per_msa: int = 2**14,
    ):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.ffn_embedding_dim = ffn_embedding_dim
        self.max_tokens_per_msa = max_tokens_per_msa
        self.activation_fn = nn.GELU()
        self.activation_dropout_module = nn.Dropout(
            activation_dropout,
        )
        self.fc1 = nn.Linear(embedding_dim, ffn_embedding_dim)
        self.fc2 = nn.Linear(ffn_embedding_dim, embedding_dim)

    def forward(self, x):
        x = self.activation_fn(self.fc1(x))
        x = self.activation_dropout_module(x)
        x = self.fc2(x)
        return x