LongVU / longvu /mm_utils.py
Vision-CAIR's picture
Upload 39 files
85efb5b verified
raw
history blame
11.8 kB
import ast
import base64
import math
from io import BytesIO
import torch
from longvu.constants import IMAGE_TOKEN_INDEX
from PIL import Image
from transformers import StoppingCriteria
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for width, height in possible_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(
original_height * scale
)
effective_resolution = min(
downscaled_width * downscaled_height, original_width * original_height
)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (
effective_resolution == max_effective_resolution
and wasted_resolution < min_wasted_resolution
):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def resize_and_pad_image(image, target_resolution):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (tuple): The size of the input image in the format (width, height).
grid_pinpoints (str): A string representation of a list of possible resolutions.
patch_size (int): The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
width, height = select_best_resolution(image_size, possible_resolutions)
return width // patch_size, height // patch_size
def process_anyres_image(image, processor, grid_pinpoints):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
patches = divide_to_patches(image_padded, processor.crop_size["height"])
image_original_resize = image.resize(
(processor.size["shortest_edge"], processor.size["shortest_edge"])
)
image_patches = [image_original_resize] + patches
image_patches = [
processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0]
for image_patch in image_patches
]
return torch.stack(image_patches, dim=0)
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
# def process_images(images, image_processor, model_cfg):
# image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
# new_images = []
# if image_aspect_ratio == 'pad':
# for image in images:
# image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
# image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
# new_images.append(image)
# elif image_aspect_ratio == "anyres":
# for image in images:
# image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
# new_images.append(image)
# else:
# return image_processor(images, return_tensors='pt')['pixel_values']
# if all(x.shape == new_images[0].shape for x in new_images):
# new_images = torch.stack(new_images, dim=0)
# return new_images
# multiple vision towers
def process_images(images, image_processor, model_cfg):
processor_aux_list = image_processor
new_images_aux_list = []
for image in images:
image_aux_list = []
for processor_aux in processor_aux_list:
image_aux = image
if hasattr(processor_aux, "image_mean"):
try:
target_resolution = processor_aux.crop_size["height"]
except:
target_resolution = processor_aux.size["height"]
image_aux = expand2square(
image_aux, tuple(int(x * 255) for x in processor_aux.image_mean)
).resize((target_resolution, target_resolution))
image_aux = processor_aux.preprocess(image_aux, return_tensors="pt")[
"pixel_values"
][0]
image_aux_list.append(image_aux)
new_images_aux_list.append(image_aux_list)
new_images_aux_list = [
list(batch_image_aux) for batch_image_aux in zip(*new_images_aux_list)
]
new_images_aux_list = [
torch.stack(image_aux).half().cuda() for image_aux in new_images_aux_list
]
return new_images_aux_list
def tokenizer_image_token(
prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None
):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if (
len(prompt_chunks) > 0
and len(prompt_chunks[0]) > 0
and prompt_chunks[0][0] == tokenizer.bos_token_id
):
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
def tokenizer_image_token_llama3(
prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None
):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
for x in insert_separator(prompt_chunks, [image_token_index]):
input_ids.extend(x)
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
self.max_keyword_len = 0
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if (
len(cur_keyword_ids) > 1
and cur_keyword_ids[0] == tokenizer.bos_token_id
):
cur_keyword_ids = cur_keyword_ids[1:]
if len(cur_keyword_ids) > self.max_keyword_len:
self.max_keyword_len = len(cur_keyword_ids)
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def call_for_batch(
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
self.keyword_ids = [
keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids
]
for keyword_id in self.keyword_ids:
truncated_output_ids = output_ids[0, -keyword_id.shape[0] :]
if torch.equal(truncated_output_ids, keyword_id):
return True
outputs = self.tokenizer.batch_decode(
output_ids[:, -offset:], skip_special_tokens=True
)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
def __call__(
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
) -> bool:
outputs = []
for i in range(output_ids.shape[0]):
# pyre-fixme[6]: For 1st argument expected `LongTensor` but got `Tensor`.
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
return all(outputs)