Spaces:
Runtime error
Runtime error
alex buz
commited on
Commit
•
e68465b
1
Parent(s):
b9b0f7f
new
Browse files- app.py +143 -0
- pre-requirements.txt +1 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
+
import spaces
|
4 |
+
|
5 |
+
import requests
|
6 |
+
import copy
|
7 |
+
|
8 |
+
from PIL import Image, ImageDraw, ImageFont
|
9 |
+
import io
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import matplotlib.patches as patches
|
12 |
+
|
13 |
+
import random
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
import subprocess
|
17 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
18 |
+
|
19 |
+
models = {
|
20 |
+
'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval(),
|
21 |
+
'microsoft/Florence-2-large': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to("cuda").eval(),
|
22 |
+
'microsoft/Florence-2-base-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True).to("cuda").eval(),
|
23 |
+
'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval(),
|
24 |
+
}
|
25 |
+
|
26 |
+
processors = {
|
27 |
+
'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
|
28 |
+
'microsoft/Florence-2-large': AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True),
|
29 |
+
'microsoft/Florence-2-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True),
|
30 |
+
'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True),
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
DESCRIPTION = "# [Florence-2 OCR Demo](https://huggingface.co/microsoft/Florence-2-large)"
|
35 |
+
|
36 |
+
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
37 |
+
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
38 |
+
|
39 |
+
def fig_to_pil(fig):
|
40 |
+
buf = io.BytesIO()
|
41 |
+
fig.savefig(buf, format='png')
|
42 |
+
buf.seek(0)
|
43 |
+
return Image.open(buf)
|
44 |
+
|
45 |
+
@spaces.GPU
|
46 |
+
def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-large'):
|
47 |
+
model = models[model_id]
|
48 |
+
processor = processors[model_id]
|
49 |
+
if text_input is None:
|
50 |
+
prompt = task_prompt
|
51 |
+
else:
|
52 |
+
prompt = task_prompt + text_input
|
53 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
54 |
+
generated_ids = model.generate(
|
55 |
+
input_ids=inputs["input_ids"],
|
56 |
+
pixel_values=inputs["pixel_values"],
|
57 |
+
max_new_tokens=1024,
|
58 |
+
early_stopping=False,
|
59 |
+
do_sample=False,
|
60 |
+
num_beams=3,
|
61 |
+
)
|
62 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
63 |
+
parsed_answer = processor.post_process_generation(
|
64 |
+
generated_text,
|
65 |
+
task=task_prompt,
|
66 |
+
image_size=(image.width, image.height)
|
67 |
+
)
|
68 |
+
return parsed_answer
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-large'):
|
74 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
75 |
+
|
76 |
+
if task_prompt == 'OCR':
|
77 |
+
task_prompt = '<OCR>'
|
78 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
79 |
+
return results, None
|
80 |
+
else:
|
81 |
+
return "", None # Return empty string and None for unknown task prompts
|
82 |
+
|
83 |
+
css = """
|
84 |
+
#output {
|
85 |
+
height: 500px;
|
86 |
+
overflow: auto;
|
87 |
+
border: 1px solid #ccc;
|
88 |
+
}
|
89 |
+
"""
|
90 |
+
|
91 |
+
|
92 |
+
single_task_list =[
|
93 |
+
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
94 |
+
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
95 |
+
'Referring Expression Segmentation', 'Region to Segmentation',
|
96 |
+
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
97 |
+
'OCR', 'OCR with Region'
|
98 |
+
]
|
99 |
+
|
100 |
+
cascased_task_list =[
|
101 |
+
'Caption + Grounding', 'Detailed Caption + Grounding', 'More Detailed Caption + Grounding'
|
102 |
+
]
|
103 |
+
|
104 |
+
|
105 |
+
def update_task_dropdown(choice):
|
106 |
+
if choice == 'Cascased task':
|
107 |
+
return gr.Dropdown(choices=cascased_task_list, value='Caption + Grounding')
|
108 |
+
else:
|
109 |
+
return gr.Dropdown(choices=single_task_list, value='Caption')
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
with gr.Blocks(css=css) as demo:
|
114 |
+
gr.Markdown(DESCRIPTION)
|
115 |
+
with gr.Tab(label="Florence-2 Image Captioning"):
|
116 |
+
with gr.Row():
|
117 |
+
with gr.Column():
|
118 |
+
input_img = gr.Image(label="Input Picture")
|
119 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-large')
|
120 |
+
task_type = gr.Radio(choices=['Single task', 'Cascased task'], label='Task type selector', value='Single task')
|
121 |
+
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Caption")
|
122 |
+
task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt)
|
123 |
+
text_input = gr.Textbox(label="Text Input (optional)")
|
124 |
+
submit_btn = gr.Button(value="Submit")
|
125 |
+
with gr.Column():
|
126 |
+
output_text = gr.Textbox(label="Output Text")
|
127 |
+
|
128 |
+
|
129 |
+
gr.Examples(
|
130 |
+
examples=[
|
131 |
+
["image1.jpg", 'Object Detection'],
|
132 |
+
["image2.jpg", 'OCR with Region']
|
133 |
+
],
|
134 |
+
inputs=[input_img, task_prompt],
|
135 |
+
outputs=[output_text],
|
136 |
+
fn=process_image,
|
137 |
+
cache_examples=True,
|
138 |
+
label='Try examples'
|
139 |
+
)
|
140 |
+
|
141 |
+
submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text])
|
142 |
+
|
143 |
+
demo.launch(debug=True)
|
pre-requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
pip>=23.0.0
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
spaces
|
2 |
+
transformers
|
3 |
+
timm
|