|
import gradio as gr |
|
import shutil |
|
|
|
import urllib.request |
|
import sys |
|
import os |
|
import urllib.request |
|
import zipfile |
|
|
|
sys.path.append(".") |
|
|
|
|
|
gr.close_all() |
|
|
|
|
|
urllib.request.urlretrieve("https://storage.googleapis.com/models-gradio/products/products.zip", "products.zip") |
|
|
|
|
|
with zipfile.ZipFile("products.zip", 'r') as zip_ref: |
|
zip_ref.extractall() |
|
|
|
from model import prediction |
|
|
|
def predict(img): |
|
|
|
prediction_img, text, t_process = prediction(img) |
|
|
|
return t_process, str(text), prediction_img, |
|
|
|
|
|
sample_images = ["dataset/" + name for name in os.listdir("dataset")] |
|
|
|
|
|
gr.Interface(fn=predict, |
|
inputs=[gr.Image(label="image à tester" ,type="filepath")], |
|
outputs=[gr.Textbox(label="temps"), gr.Textbox(label="analyse"), gr.Image(label ="résultat") ], |
|
css="footer {visibility: hidden} body}, .gradio-container {background-color: white}", |
|
examples=sample_images).launch(server_name="0.0.0.0", share=False) |
|
|