import numpy as np import scipy import torch from torch import nn, view_as_real, view_as_complex class ISTFT(nn.Module): """ Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges. See issue: https://github.com/pytorch/pytorch/issues/62323 Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs. The NOLA constraint is met as we trim padded samples anyway. Args: n_fft (int): Size of Fourier transform. hop_length (int): The distance between neighboring sliding window frames. win_length (int): The size of window frame and STFT filter. padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". """ def __init__(self, n_fft: int, hop_length: int, win_length: int, padding: str = "same"): super().__init__() if padding not in ["center", "same"]: raise ValueError("Padding must be 'center' or 'same'.") self.padding = padding self.n_fft = n_fft self.hop_length = hop_length self.win_length = win_length window = torch.hann_window(win_length) self.register_buffer("window", window) def forward(self, spec: torch.Tensor) -> torch.Tensor: """ Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram. Args: spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size, N is the number of frequency bins, and T is the number of time frames. Returns: Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal. """ if self.padding == "center": # Fallback to pytorch native implementation return torch.istft(spec, self.n_fft, self.hop_length, self.win_length, self.window, center=True) elif self.padding == "same": pad = (self.win_length - self.hop_length) // 2 else: raise ValueError("Padding must be 'center' or 'same'.") assert spec.dim() == 3, "Expected a 3D tensor as input" B, N, T = spec.shape # Inverse FFT ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward") ifft = ifft * self.window[None, :, None] # Overlap and Add output_size = (T - 1) * self.hop_length + self.win_length y = torch.nn.functional.fold( ifft, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), )[:, 0, 0, pad:-pad] # Window envelope window_sq = self.window.square().expand(1, T, -1).transpose(1, 2) window_envelope = torch.nn.functional.fold( window_sq, output_size=(1, output_size), kernel_size=(1, self.win_length), stride=(1, self.hop_length), ).squeeze()[pad:-pad] # Normalize assert (window_envelope > 1e-11).all() y = y / window_envelope return y class MDCT(nn.Module): """ Modified Discrete Cosine Transform (MDCT) module. Args: frame_len (int): Length of the MDCT frame. padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". """ def __init__(self, frame_len: int, padding: str = "same"): super().__init__() if padding not in ["center", "same"]: raise ValueError("Padding must be 'center' or 'same'.") self.padding = padding self.frame_len = frame_len N = frame_len // 2 n0 = (N + 1) / 2 window = torch.from_numpy(scipy.signal.cosine(frame_len)).float() self.register_buffer("window", window) pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len) post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N) # view_as_real: NCCL Backend does not support ComplexFloat data type # https://github.com/pytorch/pytorch/issues/71613 self.register_buffer("pre_twiddle", view_as_real(pre_twiddle)) self.register_buffer("post_twiddle", view_as_real(post_twiddle)) def forward(self, audio: torch.Tensor) -> torch.Tensor: """ Apply the Modified Discrete Cosine Transform (MDCT) to the input audio. Args: audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size and T is the length of the audio. Returns: Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames and N is the number of frequency bins. """ if self.padding == "center": audio = torch.nn.functional.pad(audio, (self.frame_len // 2, self.frame_len // 2)) elif self.padding == "same": # hop_length is 1/2 frame_len audio = torch.nn.functional.pad(audio, (self.frame_len // 4, self.frame_len // 4)) else: raise ValueError("Padding must be 'center' or 'same'.") x = audio.unfold(-1, self.frame_len, self.frame_len // 2) N = self.frame_len // 2 x = x * self.window.expand(x.shape) X = torch.fft.fft(x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1)[..., :N] res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N) return torch.real(res) * np.sqrt(2) class IMDCT(nn.Module): """ Inverse Modified Discrete Cosine Transform (IMDCT) module. Args: frame_len (int): Length of the MDCT frame. padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". """ def __init__(self, frame_len: int, padding: str = "same"): super().__init__() if padding not in ["center", "same"]: raise ValueError("Padding must be 'center' or 'same'.") self.padding = padding self.frame_len = frame_len N = frame_len // 2 n0 = (N + 1) / 2 window = torch.from_numpy(scipy.signal.cosine(frame_len)).float() self.register_buffer("window", window) pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N) post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2)) self.register_buffer("pre_twiddle", view_as_real(pre_twiddle)) self.register_buffer("post_twiddle", view_as_real(post_twiddle)) def forward(self, X: torch.Tensor) -> torch.Tensor: """ Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients. Args: X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size, L is the number of frames, and N is the number of frequency bins. Returns: Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio. """ B, L, N = X.shape Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device) Y[..., :N] = X Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,))) y = torch.fft.ifft(Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1) y = torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape)) * np.sqrt(N) * np.sqrt(2) result = y * self.window.expand(y.shape) output_size = (1, (L + 1) * N) audio = torch.nn.functional.fold( result.transpose(1, 2), output_size=output_size, kernel_size=(1, self.frame_len), stride=(1, self.frame_len // 2), )[:, 0, 0, :] if self.padding == "center": pad = self.frame_len // 2 elif self.padding == "same": pad = self.frame_len // 4 else: raise ValueError("Padding must be 'center' or 'same'.") audio = audio[:, pad:-pad] return audio