File size: 20,066 Bytes
54de438
99ab61a
 
 
 
 
 
54de438
99ab61a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb8881a
99ab61a
 
 
 
 
3401663
99ab61a
 
 
 
 
 
 
 
 
 
 
 
ead360a
 
99ab61a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3401663
 
 
 
 
 
 
 
99ab61a
 
 
 
 
ead360a
 
 
99ab61a
 
 
 
 
 
 
 
3401663
99ab61a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54de438
99ab61a
 
 
54de438
99ab61a
 
 
 
 
3401663
ead360a
 
 
 
99ab61a
 
54de438
99ab61a
9eba3ac
99ab61a
54de438
 
 
 
 
9eba3ac
54de438
 
99ab61a
 
 
 
 
 
 
 
 
 
54de438
 
99ab61a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import datetime
import requests
import csv
from io import StringIO
import time
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from datasets import Dataset

class PBSPublicDataAPIClient:
    def __init__(self, subscription_key, base_url='https://data-api.health.gov.au/pbs/api/v3', rate_limit=0.2):
        self.subscription_key = subscription_key
        self.base_url = base_url
        self.rate_limit = rate_limit  # Requests per second
        self.last_request_time = 0
        
        # Set up a session with retry strategy
        self.session = requests.Session()
        retries = Retry(total=5, backoff_factor=1, status_forcelist=[429, 500, 502, 503, 504])
        self.session.mount('https://', HTTPAdapter(max_retries=retries))

    def get_sample_data(self, endpoint, limit=5):
        params = {"limit": limit}
        response = self.make_request(endpoint, params=params, accept="text/csv")
        csv_content = StringIO(response.text)
        return list(csv.DictReader(csv_content))

    def fetch_sample_data(self):
        schedules = self.get_schedules()
        latest_schedule = schedules[0]['schedule_code']

        endpoints = [
            "amt-items",
            "atc-codes",
            "indications",
            "prescribing-texts",
            "item-prescribing-text-relationships",
            "restrictions",
            "item-restriction-relationships"
        ]

        sample_data = {}
        for endpoint in endpoints:
            print(f"Fetching sample data from /{endpoint}...")
            data = self.get_sample_data(endpoint)
            if data:
                sample_data[endpoint] = data
                print(f"Sample keys for {endpoint}: {data[0].keys()}")
            else:
                print(f"No data found for {endpoint}")
            time.sleep(2)  # Wait 2 seconds between requests to avoid rate limiting

        return sample_data

    def get_raw_data(self, endpoint, params=None, accept="application/json"):
        response = self.make_request(endpoint, params=params, accept=accept)
        return response.text

    def make_request(self, endpoint, params=None, accept="application/json"):
        url = f"{self.base_url}/{endpoint}"
        headers = {
            "subscription-key": self.subscription_key,
            "Accept": accept
        }

        while True:
            current_time = time.time()
            time_since_last_request = current_time - self.last_request_time
            if time_since_last_request < 1 / self.rate_limit:
                sleep_time = (1 / self.rate_limit) - time_since_last_request
                time.sleep(sleep_time)

            try:
                response = self.session.get(url, headers=headers, params=params)
                self.last_request_time = time.time()

                if response.status_code == 429:
                    retry_after = int(response.headers.get('Retry-After', 60))
                    print(f"Rate limit exceeded. Waiting for {retry_after} seconds.")
                    time.sleep(retry_after)
                    continue

                response.raise_for_status()
                return response

            except requests.exceptions.RequestException as e:
                print(f"Request failed: {str(e)}. Retrying in 5 seconds...")
                time.sleep(5)

    def get_schedules(self, limit=100):
        endpoint = "schedules"
        params = {"limit": limit}
        response = self.make_request(endpoint, params=params)
        json_data = response.json()
        return json_data['data']

    def get_amt_items(self, schedule_code, limit=100000):
        endpoint = "amt-items"
        params = {
            "schedule_code": schedule_code,
            "limit": limit
        }
        response = self.make_request(endpoint, params=params, accept="text/csv")
        csv_content = StringIO(response.text)
        return list(csv.DictReader(csv_content))

    def get_atc_codes(self, schedule_code, limit=100000):
        endpoint = "atc-codes"
        params = {
            "schedule_code": schedule_code,
            "limit": limit
        }
        response = self.make_request(endpoint, params=params, accept="text/csv")
        csv_content = StringIO(response.text)
        return list(csv.DictReader(csv_content))

    def get_indications(self, schedule_code, limit=100000):
        endpoint = "indications"
        params = {
            "schedule_code": schedule_code,
            "limit": limit
        }
        response = self.make_request(endpoint, params=params, accept="text/csv")
        csv_content = StringIO(response.text)
        return list(csv.DictReader(csv_content))

    def get_prescribing_texts(self, schedule_code, limit=100000):
        endpoint = "prescribing-texts"
        params = {
            "schedule_code": schedule_code,
            "limit": limit
        }
        response = self.make_request(endpoint, params=params, accept="text/csv")
        csv_content = StringIO(response.text)
        return list(csv.DictReader(csv_content))

    def get_item_prescribing_text_relationships(self, schedule_code, limit=100000):
        endpoint = "item-prescribing-text-relationships"
        params = {
            "schedule_code": schedule_code,
            "limit": limit
        }
        response = self.make_request(endpoint, params=params, accept="text/csv")
        csv_content = StringIO(response.text)
        return list(csv.DictReader(csv_content))

    def get_restrictions(self, schedule_code, limit=100000):
        endpoint = "restrictions"
        params = {
            "schedule_code": schedule_code,
            "limit": limit
        }
        response = self.make_request(endpoint, params=params, accept="text/csv")
        csv_content = StringIO(response.text)
        return list(csv.DictReader(csv_content))

    def get_item_restriction_relationships(self, schedule_code, limit=100000):
        endpoint = "item-restriction-relationships"
        params = {
            "schedule_code": schedule_code,
            "limit": limit
        }
        response = self.make_request(endpoint, params=params, accept="text/csv")
        csv_content = StringIO(response.text)
        return list(csv.DictReader(csv_content))

    def get_restriction_prescribing_text_relationships(self, schedule_code, limit=100000):
        endpoint = "restriction-prescribing-text-relationships"
        params = {
            "schedule_code": schedule_code,
            "limit": limit
        }
        response = self.make_request(endpoint, params=params, accept="text/csv")
        csv_content = StringIO(response.text)
        return list(csv.DictReader(csv_content))

    def get_items(self, schedule_code, limit=100000):
        endpoint = "items"
        params = {
            "schedule_code": schedule_code,
            "limit": limit
        }
        response = self.make_request(endpoint, params=params, accept="text/csv")
        csv_content = StringIO(response.text)
        return list(csv.DictReader(csv_content))

    def fetch_rheumatology_biologics_data(self):
        biologics = [
            "adalimumab", "etanercept", "infliximab", "certolizumab", "golimumab",
            "rituximab", "abatacept", "tocilizumab", "secukinumab", "ixekizumab",
            "ustekinumab", "guselkumab", "tofacitinib", "baricitinib", "secukinumab",
            "upadacitinib", "anifrolumab"
        ]

        rheumatic_diseases = [
            "rheumatoid arthritis", "psoriatic arthritis", "ankylosing spondylitis",
            "non-radiographic axial spondyloarthritis", "giant cell arteritis", 
            "juvenile idiopathic arthritis", "systemic lupus erythematosus"
        ]

        data = {}
        schedules = self.get_schedules()

        # Select schedule based on current month
        current_date = datetime.datetime.now()
        current_schedule = next(
            (s for s in schedules if s['effective_year'] == current_date.year and s['effective_month'] == current_date.strftime('%B').upper()),
            schedules[0]  # fallback to the most recent schedule if no match
        )
        latest_schedule = current_schedule['schedule_code']
        schedule_year = current_schedule['effective_year']
        schedule_month = current_schedule['effective_month']

        print(f"Selected schedule: {latest_schedule} (Effective: {current_schedule['effective_date']})")

        print("Fetching items...")
        items = self.get_items(latest_schedule)
        time.sleep(5)

        print("Fetching indications...")
        indications = self.get_indications(latest_schedule)
        print(f"Number of indications fetched: {len(indications)}")
        print("Sample of raw indications data:")
        for indication in indications[:5]:
            print(indication)
        time.sleep(5)

        print("Fetching prescribing texts...")
        prescribing_texts = self.get_prescribing_texts(latest_schedule)
        time.sleep(5)

        print("Fetching item-prescribing-text relationships...")
        item_prescribing_text_relationships = self.get_item_prescribing_text_relationships(latest_schedule)
        time.sleep(5)

        print("Fetching restrictions...")
        restrictions = self.get_restrictions(latest_schedule)
        time.sleep(5)

        print("Fetching item-restriction relationships...")
        item_restriction_relationships = self.get_item_restriction_relationships(latest_schedule)

        print("Fetching restriction-prescribing-text relationships...")
        restriction_prescribing_text_relationships = self.get_restriction_prescribing_text_relationships(latest_schedule)
        print(f"Number of restriction-prescribing-text relationships fetched: {len(restriction_prescribing_text_relationships)}")
        time.sleep(5)

        # Create lookup dictionaries
        prescribing_text_lookup = {text['prescribing_txt_id']: text for text in prescribing_texts if 'prescribing_txt_id' in text}
        restriction_lookup = {res['res_code']: res for res in restrictions if 'res_code' in res}

        # Create indication lookup
        indication_lookup = {}
        for ind in indications:
            # Print all keys in the first indication to see available fields
            if not indication_lookup:
                print("Keys in indication data:", ind.keys())
            
            # Try different possible keys for the prescribing text ID
            prescribing_text_id = ind.get('prescribing_text_id') or ind.get('indication_prescribing_txt_id') or ind.get('prescribing_txt_id')
            if prescribing_text_id:
                indication_lookup[prescribing_text_id] = ind

        print(f"Number of items in indication_lookup: {len(indication_lookup)}")
        print("Sample of indication_lookup:")
        for key, value in list(indication_lookup.items())[:5]:
            print(f"  {key}: {value}")

        # Create a lookup for item-prescribing-text relationships
        item_prescribing_text_lookup = {}
        for relationship in item_prescribing_text_relationships:
            pbs_code = relationship.get('pbs_code')
            prescribing_txt_id = relationship.get('prescribing_txt_id')
            if pbs_code and prescribing_txt_id:
                if pbs_code not in item_prescribing_text_lookup:
                    item_prescribing_text_lookup[pbs_code] = []
                item_prescribing_text_lookup[pbs_code].append(prescribing_txt_id)

        # Create a lookup for restriction-prescribing-text relationships
        restriction_prescribing_text_lookup = {}
        print("\nDebugging restriction-prescribing-text relationships:")
        print("Full structure of first 5 relationships:")
        for relationship in restriction_prescribing_text_relationships[:5]:
            print(relationship)

        for relationship in restriction_prescribing_text_relationships:
            res_code = relationship.get('res_code')
            prescribing_text_id = relationship.get('prescribing_text_id')
            if res_code and prescribing_text_id:
                if res_code not in restriction_prescribing_text_lookup:
                    restriction_prescribing_text_lookup[res_code] = []
                restriction_prescribing_text_lookup[res_code].append(prescribing_text_id)

        print(f"Number of items in restriction_prescribing_text_lookup: {len(restriction_prescribing_text_lookup)}")
        print("Sample of restriction_prescribing_text_lookup:")
        for key, value in list(restriction_prescribing_text_lookup.items())[:5]:
            print(f"  {key}: {value}")

        print("Debugging: Inspecting lookups")
        print(f"Number of items in prescribing_text_lookup: {len(prescribing_text_lookup)}")
        print(f"Number of items in restriction_lookup: {len(restriction_lookup)}")
        print(f"Number of items in indication_lookup: {len(indication_lookup)}")
        print(f"Number of items in item_prescribing_text_lookup: {len(item_prescribing_text_lookup)}")
        print(f"Number of items in restriction_prescribing_text_lookup: {len(restriction_prescribing_text_lookup)}")

        def classify_formulation(description):
            # Define keywords for each formulation type
            tablet_keywords = ['Tablet']
            pen_keywords = ['pen', 'auto-injector', 'autoinjector']
            syringe_keywords = ['syringe']
            infusion_keywords = ['I.V. infusion', 'Concentrate for injection']

            # Normalize the description to lowercase for case-insensitive matching
            desc_lower = description.lower()

            # Check for keywords and return the corresponding formulation type
            if any(keyword.lower() in desc_lower for keyword in tablet_keywords):
                return 'tablet'
            elif any(keyword.lower() in desc_lower for keyword in pen_keywords):
                return 'subcut pen'
            elif any(keyword.lower() in desc_lower for keyword in syringe_keywords):
                return 'subcut syringe'
            elif any(keyword.lower() in desc_lower for keyword in infusion_keywords):
                return 'infusion'
            else:
                return 'unknown'  # For cases that don't match any category

        def classify_hospital_type(program_code):
            if program_code == 'HS':
                return 'Private'
            elif program_code == 'HB':
                return 'Public'
            else:
                return 'Any'

        for item in items:
            if any(biologic.lower() in item['drug_name'].lower() for biologic in biologics):
                pbs_code = item['pbs_code']
                if pbs_code not in data:
                    data[pbs_code] = {
                        "schedule_code": latest_schedule,
                        "schedule_year": schedule_year,
                        "schedule_month": schedule_month,
                        "name": item['drug_name'],
                        "brands": [],  # Change this to a list
                        "formulation": classify_formulation(item['li_form']),
                        "li_form": item['li_form'],
                        "schedule_form": item['schedule_form'],
                        "manner_of_administration": item['manner_of_administration'],
                        "maximum_quantity": item['maximum_quantity_units'],
                        "number_of_repeats": item['number_of_repeats'],
                        "hospital_type": classify_hospital_type(item['program_code']),
                        "restrictions": []
                    }
                # Append the brand name if it's not already in the list
                if item['brand_name'] not in data[pbs_code]['brands']:
                    data[pbs_code]['brands'].append(item['brand_name'])

        for pbs_code in list(data.keys()):
            for relationship in item_restriction_relationships:
                if relationship.get('pbs_code') == pbs_code:
                    res_code = relationship.get('res_code')
                    restriction = restriction_lookup.get(res_code)
                    if restriction:
                        prescribing_text_ids = restriction_prescribing_text_lookup.get(res_code, [])
                        for prescribing_text_id in prescribing_text_ids:
                            indication = indication_lookup.get(prescribing_text_id)
                            if indication:
                                condition = indication.get('condition', '').lower()
                                found_indication = next((disease for disease in rheumatic_diseases if disease.lower() in condition), None)
                                if found_indication:
                                    restriction_data = {
                                        'res_code': res_code,
                                        'indications': found_indication,
                                        'treatment_phase': restriction.get('treatment_phase', ''),
                                        'restriction_text': restriction.get('li_html_text', ''),
                                        'authority_method': restriction.get('authority_method', ''),
                                        'streamlined_code': restriction.get('treatment_of_code') if restriction.get('authority_method') == "STREAMLINED" else None,
                                        'online_application': "HOBART TAS 7001" not in restriction.get('schedule_html_text', '')
                                    }
                                    data[pbs_code]['restrictions'].append(restriction_data)
                                    break  # Stop after finding the first matching indication

        # Drop entries if restrictions are empty
        data = {k: v for k, v in data.items() if v['restrictions']}
        return data

    def preprocess_data(self, data):
        processed = {
            'combinations': []
        }
        
        for pbs_code, item in data.items():
            for restriction in item['restrictions']:
                for brand in item['brands']:
                    processed['combinations'].append({
                        'pbs_code': pbs_code,
                        'drug': item['name'],
                        'brand': brand,
                        'formulation': item['li_form'],
                        'indication': restriction['indications'],
                        'treatment_phase': restriction['treatment_phase'],
                        'streamlined_code': restriction['streamlined_code'],
                        'online_application': restriction['online_application'],
                        'authority_method': restriction['authority_method'],
                        'hospital_type': item['hospital_type'],
                        'schedule_code': item['schedule_code'],
                        'schedule_year': item['schedule_year'],
                        'schedule_month': item['schedule_month']
                    })
        
        return processed

    def save_data_to_hf(self, data, hf_token, dataset_name="cmcmaster/rheumatology-biologics-dataset"):
        processed_data = self.preprocess_data(data)
        
        # Create a Dataset from the combinations
        dataset = Dataset.from_list(processed_data['combinations'])
        
        # Push the dataset to the Hugging Face Hub
        dataset.push_to_hub(dataset_name, token=hf_token)
        
        print(f"Data saved to Hugging Face Hub: {dataset_name}")

def main():
    client = PBSPublicDataAPIClient("2384af7c667342ceb5a736fe29f1dc6b", rate_limit=0.2)

    try:
        print("Fetching data on biologics used for rheumatological diseases...")
        data = client.fetch_rheumatology_biologics_data()
        
        print(f"Data fetched for {len(data)} items.")
        
        client.save_data_to_hf(data)
        print("Data saved to Hugging Face Hub")

    except Exception as e:
        print(f"An error occurred: {str(e)}")

if __name__ == "__main__":
    main()