Spaces:
Build error
Build error
File size: 17,932 Bytes
ed0684c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, DPMSolverMultistepScheduler
import gradio as gr
import torch
from PIL import Image
import utils
import datetime
import time
import psutil
import random
start_time = time.time()
is_colab = utils.is_google_colab()
state = None
current_steps = 25
class Model:
def __init__(self, name, path="", prefix=""):
self.name = name
self.path = path
self.prefix = prefix
self.pipe_t2i = None
self.pipe_i2i = None
models = [
Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
Model("Dreamlike Diffusion 1.0", "dreamlike-art/dreamlike-diffusion-1.0", "dreamlikeart "),
Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
Model("Anything V3", "Linaqruf/anything-v3.0", ""),
Model("Modern Disney", "nitrosocke/mo-di-diffusion", "modern disney style "),
Model("Classic Disney", "nitrosocke/classic-anim-diffusion", "classic disney style "),
Model("Loving Vincent (Van Gogh)", "dallinmackay/Van-Gogh-diffusion", "lvngvncnt "),
Model("Wavyfusion", "wavymulder/wavyfusion", "wa-vy style "),
Model("Analog Diffusion", "wavymulder/Analog-Diffusion", "analog style "),
Model("Redshift renderer (Cinema4D)", "nitrosocke/redshift-diffusion", "redshift style "),
Model("Midjourney v4 style", "prompthero/midjourney-v4-diffusion", "mdjrny-v4 style "),
Model("Waifu", "hakurei/waifu-diffusion"),
Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
Model("TrinArt v2", "naclbit/trinart_stable_diffusion_v2"),
Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy "),
Model("Pokémon", "lambdalabs/sd-pokemon-diffusers"),
Model("Pony Diffusion", "AstraliteHeart/pony-diffusion"),
Model("Robo Diffusion", "nousr/robo-diffusion"),
Model("Epic Diffusion", "johnslegers/epic-diffusion")
]
custom_model = None
if is_colab:
models.insert(0, Model("Custom model"))
custom_model = models[0]
last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path
if is_colab:
pipe = StableDiffusionPipeline.from_pretrained(
current_model.path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
safety_checker=lambda images, clip_input: (images, False)
)
else:
pipe = StableDiffusionPipeline.from_pretrained(
current_model.path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def error_str(error, title="Error"):
return f"""#### {title}
{error}""" if error else ""
def update_state(new_state):
global state
state = new_state
def update_state_info(old_state):
if state and state != old_state:
return gr.update(value=state)
def custom_model_changed(path):
models[0].path = path
global current_model
current_model = models[0]
def on_model_change(model_name):
prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[0].name else "Don't forget to use the custom model prefix in the prompt!"
return gr.update(visible = model_name == models[0].name), gr.update(placeholder=prefix)
def on_steps_change(steps):
global current_steps
current_steps = steps
def pipe_callback(step: int, timestep: int, latents: torch.FloatTensor):
update_state(f"{step}/{current_steps} steps")#\nTime left, sec: {timestep/100:.0f}")
def inference(model_name, prompt, guidance, steps, n_images=1, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
update_state(" ")
print(psutil.virtual_memory()) # print memory usage
global current_model
for model in models:
if model.name == model_name:
current_model = model
model_path = current_model.path
# generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
if seed == 0:
seed = random.randint(0, 2147483647)
generator = torch.Generator('cuda').manual_seed(seed)
try:
if img is not None:
return img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
else:
return txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed), f"Done. Seed: {seed}"
except Exception as e:
return None, error_str(e)
def txt_to_img(model_path, prompt, n_images, neg_prompt, guidance, steps, width, height, generator, seed):
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "txt2img":
current_model_path = model_path
update_state(f"Loading {current_model.name} text-to-image model...")
if is_colab or current_model == custom_model:
pipe = StableDiffusionPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
safety_checker=lambda images, clip_input: (images, False)
)
else:
pipe = StableDiffusionPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
)
# pipe = pipe.to("cpu")
# pipe = current_model.pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
last_mode = "txt2img"
prompt = current_model.prefix + prompt
result = pipe(
prompt,
negative_prompt = neg_prompt,
num_images_per_prompt=n_images,
num_inference_steps = int(steps),
guidance_scale = guidance,
width = width,
height = height,
generator = generator,
callback=pipe_callback)
# update_state(f"Done. Seed: {seed}")
return replace_nsfw_images(result)
def img_to_img(model_path, prompt, n_images, neg_prompt, img, strength, guidance, steps, width, height, generator, seed):
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "img2img":
current_model_path = model_path
update_state(f"Loading {current_model.name} image-to-image model...")
if is_colab or current_model == custom_model:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler"),
safety_checker=lambda images, clip_input: (images, False)
)
else:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=DPMSolverMultistepScheduler.from_pretrained(current_model.path, subfolder="scheduler")
)
# pipe = pipe.to("cpu")
# pipe = current_model.pipe_i2i
if torch.cuda.is_available():
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
last_mode = "img2img"
prompt = current_model.prefix + prompt
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt = neg_prompt,
num_images_per_prompt=n_images,
image = img,
num_inference_steps = int(steps),
strength = strength,
guidance_scale = guidance,
# width = width,
# height = height,
generator = generator,
callback=pipe_callback)
# update_state(f"Done. Seed: {seed}")
return replace_nsfw_images(result)
def replace_nsfw_images(results):
if is_colab:
return results.images
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images
# css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
# """
with gr.Blocks(css="style.css") as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Finetuned Diffusion</h1>
</div>
<p>
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
<a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spider-Verse</a>, <a href="https://huggingface.co/nitrosocke/mo-di-diffusion">Modern Disney</a>, <a href="https://huggingface.co/nitrosocke/classic-anim-diffusion">Classic Disney</a>, <a href="https://huggingface.co/dallinmackay/Van-Gogh-diffusion">Loving Vincent (Van Gogh)</a>, <a href="https://huggingface.co/nitrosocke/redshift-diffusion">Redshift renderer (Cinema4D)</a>, <a href="https://huggingface.co/prompthero/midjourney-v4-diffusion">Midjourney v4 style</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokémon</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony Diffusion</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo Diffusion</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a>, <a href="https://huggingface.co/dallinmackay/Tron-Legacy-diffusion">Tron Legacy</a>, <a href="https://huggingface.co/Fictiverse/Stable_Diffusion_BalloonArt_Model">Balloon Art</a> + in colab notebook you can load any other Diffusers 🧨 SD model hosted on HuggingFace 🤗.
</p>
<p>You can skip the queue and load custom models in the colab: <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
</p>
<p>You can also duplicate this space and upgrade to gpu by going to settings:<br>
<a style="display:inline-block" href="https://huggingface.co/spaces/anzorq/finetuned_diffusion?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
with gr.Box(visible=False) as custom_model_group:
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
with gr.Row():
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
# image_out = gr.Image(height=512)
gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[2], height="auto")
state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style(container=False)
error_output = gr.Markdown()
with gr.Column(scale=45):
with gr.Tab("Options"):
with gr.Group():
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
with gr.Row():
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
steps = gr.Slider(label="Steps", value=current_steps, minimum=2, maximum=75, step=1)
with gr.Row():
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
with gr.Tab("Image to image"):
with gr.Group():
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
if is_colab:
model_name.change(on_model_change, inputs=model_name, outputs=[custom_model_group, prompt], queue=False)
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
steps.change(on_steps_change, inputs=[steps], outputs=[], queue=False)
inputs = [model_name, prompt, guidance, steps, n_images, width, height, seed, image, strength, neg_prompt]
outputs = [gallery, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
ex = gr.Examples([
[models[7].name, "tiny cute and adorable kitten adventurer dressed in a warm overcoat with survival gear on a winters day", 7.5, 25],
[models[4].name, "portrait of dwayne johnson", 7.0, 35],
[models[5].name, "portrait of a beautiful alyx vance half life", 10, 25],
[models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 30],
[models[5].name, "fantasy portrait painting, digital art", 4.0, 20],
], inputs=[model_name, prompt, guidance, steps], outputs=outputs, fn=inference, cache_examples=False)
gr.HTML("""
<div style="border-top: 1px solid #303030;">
<br>
<p>Models by <a href="https://huggingface.co/nitrosocke">@nitrosocke</a>, <a href="https://twitter.com/haruu1367">@haruu1367</a>, <a href="https://twitter.com/DGSpitzer">@Helixngc7293</a>, <a href="https://twitter.com/dal_mack">@dal_mack</a>, <a href="https://twitter.com/prompthero">@prompthero</a> and others. ❤️</p>
<p>This space uses the <a href="https://github.com/LuChengTHU/dpm-solver">DPM-Solver++</a> sampler by <a href="https://arxiv.org/abs/2206.00927">Cheng Lu, et al.</a>.</p>
<p>Space by:<br>
<a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a><br>
<a href="https://github.com/qunash"><img alt="GitHub followers" src="https://img.shields.io/github/followers/qunash?style=social" alt="Github Follow"></a></p><br><br>
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br>
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion" alt="visitors"></p>
</div>
""")
demo.load(update_state_info, inputs=state_info, outputs=state_info, every=0.5, show_progress=False)
print(f"Space built in {time.time() - start_time:.2f} seconds")
# if not is_colab:
demo.queue(concurrency_count=1)
demo.launch(debug=is_colab, share=is_colab)
|