# AUTOGENERATED! DO NOT EDIT! File to edit: dog_v_cat.ipynb. # %% auto 0 __all__ = ['learn', 'categories', 'image', 'label', 'examples', 'intf', 'is_cat', 'classify_image'] # %% dog_v_cat.ipynb 1 from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% dog_v_cat.ipynb 2 from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% dog_v_cat.ipynb 4 from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% dog_v_cat.ipynb 6 from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% dog_v_cat.ipynb 7 from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% dog_v_cat.ipynb 8 from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% dog_v_cat.ipynb 9 from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% dog_v_cat.ipynb 10 from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # %% dog_v_cat.ipynb 12 learn = load_learner('/kaggle/input/models/model.pkl') # %% dog_v_cat.ipynb 14 categories = ('Dog', 'Cat') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # %% dog_v_cat.ipynb 16 image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['/kaggle/input/dog-or-cat-test/dog.jpg','/kaggle/input/dog-or-cat-test/cat.jpg', '/kaggle/input/dog-or-cat-test/challenge.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) # %% dog_v_cat.ipynb 17 image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = ['/kaggle/input/dog-or-cat-test/dog.jpg','/kaggle/input/dog-or-cat-test/cat.jpg', '/kaggle/input/dog-or-cat-test/challenge.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)