Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import Tuple | |
import torch | |
def rotate_half(x): | |
x1, x2 = x.chunk(2, dim=-1) | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(x, cos, sin): | |
cos = cos[:, : x.shape[-2], :] | |
sin = sin[:, : x.shape[-2], :] | |
return (x * cos) + (rotate_half(x) * sin) | |
class RotaryEmbedding(torch.nn.Module): | |
""" | |
The rotary position embeddings from RoFormer_ (Su et. al). | |
A crucial insight from the method is that the query and keys are | |
transformed by rotation matrices which depend on the relative positions. | |
Other implementations are available in the Rotary Transformer repo_ and in | |
GPT-NeoX_, GPT-NeoX was an inspiration | |
.. _RoFormer: https://arxiv.org/abs/2104.09864 | |
.. _repo: https://github.com/ZhuiyiTechnology/roformer | |
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox | |
.. warning: Please note that this embedding is not registered on purpose, as it is transformative | |
(it does not create the embedding dimension) and will likely be picked up (imported) on a ad-hoc basis | |
""" | |
def __init__(self, dim: int, *_, **__): | |
super().__init__() | |
# Generate and save the inverse frequency buffer (non trainable) | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
self._seq_len_cached = None | |
self._cos_cached = None | |
self._sin_cached = None | |
def _update_cos_sin_tables(self, x, seq_dimension=1): | |
seq_len = x.shape[seq_dimension] | |
# Reset the tables if the sequence length has changed, | |
# or if we're on a new device (possibly due to tracing for instance) | |
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: | |
self._seq_len_cached = seq_len | |
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq) | |
freqs = torch.einsum("i,j->ij", t, self.inv_freq) | |
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) | |
self._cos_cached = emb.cos()[None, :, :] | |
self._sin_cached = emb.sin()[None, :, :] | |
return self._cos_cached, self._sin_cached | |
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: | |
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2) | |
return ( | |
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached), | |
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached), | |
) |