Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,268 Bytes
83897ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 |
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Common data processing utilities that are used in a
typical object detection data pipeline.
"""
import logging
import numpy as np
from typing import List, Union
import pycocotools.mask as mask_util
import torch
from PIL import Image
from detectron2.structures import (
BitMasks,
Boxes,
BoxMode,
Instances,
Keypoints,
PolygonMasks,
RotatedBoxes,
polygons_to_bitmask,
)
from detectron2.utils.file_io import PathManager
from . import transforms as T
from .catalog import MetadataCatalog
__all__ = [
"SizeMismatchError",
"convert_image_to_rgb",
"check_image_size",
"transform_proposals",
"transform_instance_annotations",
"annotations_to_instances",
"annotations_to_instances_rotated",
"build_augmentation",
"build_transform_gen",
"create_keypoint_hflip_indices",
"filter_empty_instances",
"read_image",
]
class SizeMismatchError(ValueError):
"""
When loaded image has difference width/height compared with annotation.
"""
# https://en.wikipedia.org/wiki/YUV#SDTV_with_BT.601
_M_RGB2YUV = [[0.299, 0.587, 0.114], [-0.14713, -0.28886, 0.436], [0.615, -0.51499, -0.10001]]
_M_YUV2RGB = [[1.0, 0.0, 1.13983], [1.0, -0.39465, -0.58060], [1.0, 2.03211, 0.0]]
# https://www.exiv2.org/tags.html
_EXIF_ORIENT = 274 # exif 'Orientation' tag
def convert_PIL_to_numpy(image, format):
"""
Convert PIL image to numpy array of target format.
Args:
image (PIL.Image): a PIL image
format (str): the format of output image
Returns:
(np.ndarray): also see `read_image`
"""
if format is not None:
# PIL only supports RGB, so convert to RGB and flip channels over below
conversion_format = format
if format in ["BGR", "YUV-BT.601"]:
conversion_format = "RGB"
image = image.convert(conversion_format)
image = np.asarray(image)
# PIL squeezes out the channel dimension for "L", so make it HWC
if format == "L":
image = np.expand_dims(image, -1)
# handle formats not supported by PIL
elif format == "BGR":
# flip channels if needed
image = image[:, :, ::-1]
elif format == "YUV-BT.601":
image = image / 255.0
image = np.dot(image, np.array(_M_RGB2YUV).T)
return image
def convert_image_to_rgb(image, format):
"""
Convert an image from given format to RGB.
Args:
image (np.ndarray or Tensor): an HWC image
format (str): the format of input image, also see `read_image`
Returns:
(np.ndarray): (H,W,3) RGB image in 0-255 range, can be either float or uint8
"""
if isinstance(image, torch.Tensor):
image = image.cpu().numpy()
if format == "BGR":
image = image[:, :, [2, 1, 0]]
elif format == "YUV-BT.601":
image = np.dot(image, np.array(_M_YUV2RGB).T)
image = image * 255.0
else:
if format == "L":
image = image[:, :, 0]
image = image.astype(np.uint8)
image = np.asarray(Image.fromarray(image, mode=format).convert("RGB"))
return image
def _apply_exif_orientation(image):
"""
Applies the exif orientation correctly.
This code exists per the bug:
https://github.com/python-pillow/Pillow/issues/3973
with the function `ImageOps.exif_transpose`. The Pillow source raises errors with
various methods, especially `tobytes`
Function based on:
https://github.com/wkentaro/labelme/blob/v4.5.4/labelme/utils/image.py#L59
https://github.com/python-pillow/Pillow/blob/7.1.2/src/PIL/ImageOps.py#L527
Args:
image (PIL.Image): a PIL image
Returns:
(PIL.Image): the PIL image with exif orientation applied, if applicable
"""
if not hasattr(image, "getexif"):
return image
try:
exif = image.getexif()
except Exception: # https://github.com/facebookresearch/detectron2/issues/1885
exif = None
if exif is None:
return image
orientation = exif.get(_EXIF_ORIENT)
method = {
2: Image.FLIP_LEFT_RIGHT,
3: Image.ROTATE_180,
4: Image.FLIP_TOP_BOTTOM,
5: Image.TRANSPOSE,
6: Image.ROTATE_270,
7: Image.TRANSVERSE,
8: Image.ROTATE_90,
}.get(orientation)
if method is not None:
return image.transpose(method)
return image
def read_image(file_name, format=None):
"""
Read an image into the given format.
Will apply rotation and flipping if the image has such exif information.
Args:
file_name (str): image file path
format (str): one of the supported image modes in PIL, or "BGR" or "YUV-BT.601".
Returns:
image (np.ndarray):
an HWC image in the given format, which is 0-255, uint8 for
supported image modes in PIL or "BGR"; float (0-1 for Y) for YUV-BT.601.
"""
with PathManager.open(file_name, "rb") as f:
image = Image.open(f)
# work around this bug: https://github.com/python-pillow/Pillow/issues/3973
image = _apply_exif_orientation(image)
return convert_PIL_to_numpy(image, format)
def check_image_size(dataset_dict, image):
"""
Raise an error if the image does not match the size specified in the dict.
"""
if "width" in dataset_dict or "height" in dataset_dict:
image_wh = (image.shape[1], image.shape[0])
expected_wh = (dataset_dict["width"], dataset_dict["height"])
if not image_wh == expected_wh:
raise SizeMismatchError(
"Mismatched image shape{}, got {}, expect {}.".format(
(
" for image " + dataset_dict["file_name"]
if "file_name" in dataset_dict
else ""
),
image_wh,
expected_wh,
)
+ " Please check the width/height in your annotation."
)
# To ensure bbox always remap to original image size
if "width" not in dataset_dict:
dataset_dict["width"] = image.shape[1]
if "height" not in dataset_dict:
dataset_dict["height"] = image.shape[0]
def transform_proposals(dataset_dict, image_shape, transforms, *, proposal_topk, min_box_size=0):
"""
Apply transformations to the proposals in dataset_dict, if any.
Args:
dataset_dict (dict): a dict read from the dataset, possibly
contains fields "proposal_boxes", "proposal_objectness_logits", "proposal_bbox_mode"
image_shape (tuple): height, width
transforms (TransformList):
proposal_topk (int): only keep top-K scoring proposals
min_box_size (int): proposals with either side smaller than this
threshold are removed
The input dict is modified in-place, with abovementioned keys removed. A new
key "proposals" will be added. Its value is an `Instances`
object which contains the transformed proposals in its field
"proposal_boxes" and "objectness_logits".
"""
if "proposal_boxes" in dataset_dict:
# Transform proposal boxes
boxes = transforms.apply_box(
BoxMode.convert(
dataset_dict.pop("proposal_boxes"),
dataset_dict.pop("proposal_bbox_mode"),
BoxMode.XYXY_ABS,
)
)
boxes = Boxes(boxes)
objectness_logits = torch.as_tensor(
dataset_dict.pop("proposal_objectness_logits").astype("float32")
)
boxes.clip(image_shape)
keep = boxes.nonempty(threshold=min_box_size)
boxes = boxes[keep]
objectness_logits = objectness_logits[keep]
proposals = Instances(image_shape)
proposals.proposal_boxes = boxes[:proposal_topk]
proposals.objectness_logits = objectness_logits[:proposal_topk]
dataset_dict["proposals"] = proposals
def get_bbox(annotation):
"""
Get bbox from data
Args:
annotation (dict): dict of instance annotations for a single instance.
Returns:
bbox (ndarray): x1, y1, x2, y2 coordinates
"""
# bbox is 1d (per-instance bounding box)
bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"], BoxMode.XYXY_ABS)
return bbox
def transform_instance_annotations(
annotation, transforms, image_size, *, keypoint_hflip_indices=None
):
"""
Apply transforms to box, segmentation and keypoints annotations of a single instance.
It will use `transforms.apply_box` for the box, and
`transforms.apply_coords` for segmentation polygons & keypoints.
If you need anything more specially designed for each data structure,
you'll need to implement your own version of this function or the transforms.
Args:
annotation (dict): dict of instance annotations for a single instance.
It will be modified in-place.
transforms (TransformList or list[Transform]):
image_size (tuple): the height, width of the transformed image
keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`.
Returns:
dict:
the same input dict with fields "bbox", "segmentation", "keypoints"
transformed according to `transforms`.
The "bbox_mode" field will be set to XYXY_ABS.
"""
if isinstance(transforms, (tuple, list)):
transforms = T.TransformList(transforms)
# bbox is 1d (per-instance bounding box)
bbox = BoxMode.convert(annotation["bbox"], annotation["bbox_mode"], BoxMode.XYXY_ABS)
# clip transformed bbox to image size
bbox = transforms.apply_box(np.array([bbox]))[0].clip(min=0)
annotation["bbox"] = np.minimum(bbox, list(image_size + image_size)[::-1])
annotation["bbox_mode"] = BoxMode.XYXY_ABS
if "segmentation" in annotation:
# each instance contains 1 or more polygons
segm = annotation["segmentation"]
if isinstance(segm, list):
# polygons
polygons = [np.asarray(p).reshape(-1, 2) for p in segm]
annotation["segmentation"] = [
p.reshape(-1) for p in transforms.apply_polygons(polygons)
]
elif isinstance(segm, dict):
# RLE
mask = mask_util.decode(segm)
mask = transforms.apply_segmentation(mask)
assert tuple(mask.shape[:2]) == image_size
annotation["segmentation"] = mask
else:
raise ValueError(
"Cannot transform segmentation of type '{}'!"
"Supported types are: polygons as list[list[float] or ndarray],"
" COCO-style RLE as a dict.".format(type(segm))
)
if "keypoints" in annotation:
keypoints = transform_keypoint_annotations(
annotation["keypoints"], transforms, image_size, keypoint_hflip_indices
)
annotation["keypoints"] = keypoints
return annotation
def transform_keypoint_annotations(keypoints, transforms, image_size, keypoint_hflip_indices=None):
"""
Transform keypoint annotations of an image.
If a keypoint is transformed out of image boundary, it will be marked "unlabeled" (visibility=0)
Args:
keypoints (list[float]): Nx3 float in Detectron2's Dataset format.
Each point is represented by (x, y, visibility).
transforms (TransformList):
image_size (tuple): the height, width of the transformed image
keypoint_hflip_indices (ndarray[int]): see `create_keypoint_hflip_indices`.
When `transforms` includes horizontal flip, will use the index
mapping to flip keypoints.
"""
# (N*3,) -> (N, 3)
keypoints = np.asarray(keypoints, dtype="float64").reshape(-1, 3)
keypoints_xy = transforms.apply_coords(keypoints[:, :2])
# Set all out-of-boundary points to "unlabeled"
inside = (keypoints_xy >= np.array([0, 0])) & (keypoints_xy <= np.array(image_size[::-1]))
inside = inside.all(axis=1)
keypoints[:, :2] = keypoints_xy
keypoints[:, 2][~inside] = 0
# This assumes that HorizFlipTransform is the only one that does flip
do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1
# Alternative way: check if probe points was horizontally flipped.
# probe = np.asarray([[0.0, 0.0], [image_width, 0.0]])
# probe_aug = transforms.apply_coords(probe.copy())
# do_hflip = np.sign(probe[1][0] - probe[0][0]) != np.sign(probe_aug[1][0] - probe_aug[0][0]) # noqa
# If flipped, swap each keypoint with its opposite-handed equivalent
if do_hflip:
if keypoint_hflip_indices is None:
raise ValueError("Cannot flip keypoints without providing flip indices!")
if len(keypoints) != len(keypoint_hflip_indices):
raise ValueError(
"Keypoint data has {} points, but metadata "
"contains {} points!".format(len(keypoints), len(keypoint_hflip_indices))
)
keypoints = keypoints[np.asarray(keypoint_hflip_indices, dtype=np.int32), :]
# Maintain COCO convention that if visibility == 0 (unlabeled), then x, y = 0
keypoints[keypoints[:, 2] == 0] = 0
return keypoints
def annotations_to_instances(annos, image_size, mask_format="polygon"):
"""
Create an :class:`Instances` object used by the models,
from instance annotations in the dataset dict.
Args:
annos (list[dict]): a list of instance annotations in one image, each
element for one instance.
image_size (tuple): height, width
Returns:
Instances:
It will contain fields "gt_boxes", "gt_classes",
"gt_masks", "gt_keypoints", if they can be obtained from `annos`.
This is the format that builtin models expect.
"""
boxes = (
np.stack(
[BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS) for obj in annos]
)
if len(annos)
else np.zeros((0, 4))
)
target = Instances(image_size)
target.gt_boxes = Boxes(boxes)
classes = [int(obj["category_id"]) for obj in annos]
classes = torch.tensor(classes, dtype=torch.int64)
target.gt_classes = classes
if len(annos) and "segmentation" in annos[0]:
segms = [obj["segmentation"] for obj in annos]
if mask_format == "polygon":
try:
masks = PolygonMasks(segms)
except ValueError as e:
raise ValueError(
"Failed to use mask_format=='polygon' from the given annotations!"
) from e
else:
assert mask_format == "bitmask", mask_format
masks = []
for segm in segms:
if isinstance(segm, list):
# polygon
masks.append(polygons_to_bitmask(segm, *image_size))
elif isinstance(segm, dict):
# COCO RLE
masks.append(mask_util.decode(segm))
elif isinstance(segm, np.ndarray):
assert segm.ndim == 2, "Expect segmentation of 2 dimensions, got {}.".format(
segm.ndim
)
# mask array
masks.append(segm)
else:
raise ValueError(
"Cannot convert segmentation of type '{}' to BitMasks!"
"Supported types are: polygons as list[list[float] or ndarray],"
" COCO-style RLE as a dict, or a binary segmentation mask "
" in a 2D numpy array of shape HxW.".format(type(segm))
)
# torch.from_numpy does not support array with negative stride.
masks = BitMasks(
torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in masks])
)
target.gt_masks = masks
if len(annos) and "keypoints" in annos[0]:
kpts = [obj.get("keypoints", []) for obj in annos]
target.gt_keypoints = Keypoints(kpts)
return target
def annotations_to_instances_rotated(annos, image_size):
"""
Create an :class:`Instances` object used by the models,
from instance annotations in the dataset dict.
Compared to `annotations_to_instances`, this function is for rotated boxes only
Args:
annos (list[dict]): a list of instance annotations in one image, each
element for one instance.
image_size (tuple): height, width
Returns:
Instances:
Containing fields "gt_boxes", "gt_classes",
if they can be obtained from `annos`.
This is the format that builtin models expect.
"""
boxes = [obj["bbox"] for obj in annos]
target = Instances(image_size)
boxes = target.gt_boxes = RotatedBoxes(boxes)
boxes.clip(image_size)
classes = [obj["category_id"] for obj in annos]
classes = torch.tensor(classes, dtype=torch.int64)
target.gt_classes = classes
return target
def filter_empty_instances(
instances, by_box=True, by_mask=True, box_threshold=1e-5, return_mask=False
):
"""
Filter out empty instances in an `Instances` object.
Args:
instances (Instances):
by_box (bool): whether to filter out instances with empty boxes
by_mask (bool): whether to filter out instances with empty masks
box_threshold (float): minimum width and height to be considered non-empty
return_mask (bool): whether to return boolean mask of filtered instances
Returns:
Instances: the filtered instances.
tensor[bool], optional: boolean mask of filtered instances
"""
assert by_box or by_mask
r = []
if by_box:
r.append(instances.gt_boxes.nonempty(threshold=box_threshold))
if instances.has("gt_masks") and by_mask:
r.append(instances.gt_masks.nonempty())
# TODO: can also filter visible keypoints
if not r:
return instances
m = r[0]
for x in r[1:]:
m = m & x
if return_mask:
return instances[m], m
return instances[m]
def create_keypoint_hflip_indices(dataset_names: Union[str, List[str]]) -> List[int]:
"""
Args:
dataset_names: list of dataset names
Returns:
list[int]: a list of size=#keypoints, storing the
horizontally-flipped keypoint indices.
"""
if isinstance(dataset_names, str):
dataset_names = [dataset_names]
check_metadata_consistency("keypoint_names", dataset_names)
check_metadata_consistency("keypoint_flip_map", dataset_names)
meta = MetadataCatalog.get(dataset_names[0])
names = meta.keypoint_names
# TODO flip -> hflip
flip_map = dict(meta.keypoint_flip_map)
flip_map.update({v: k for k, v in flip_map.items()})
flipped_names = [i if i not in flip_map else flip_map[i] for i in names]
flip_indices = [names.index(i) for i in flipped_names]
return flip_indices
def get_fed_loss_cls_weights(dataset_names: Union[str, List[str]], freq_weight_power=1.0):
"""
Get frequency weight for each class sorted by class id.
We now calcualte freqency weight using image_count to the power freq_weight_power.
Args:
dataset_names: list of dataset names
freq_weight_power: power value
"""
if isinstance(dataset_names, str):
dataset_names = [dataset_names]
check_metadata_consistency("class_image_count", dataset_names)
meta = MetadataCatalog.get(dataset_names[0])
class_freq_meta = meta.class_image_count
class_freq = torch.tensor(
[c["image_count"] for c in sorted(class_freq_meta, key=lambda x: x["id"])]
)
class_freq_weight = class_freq.float() ** freq_weight_power
return class_freq_weight
def gen_crop_transform_with_instance(crop_size, image_size, instance):
"""
Generate a CropTransform so that the cropping region contains
the center of the given instance.
Args:
crop_size (tuple): h, w in pixels
image_size (tuple): h, w
instance (dict): an annotation dict of one instance, in Detectron2's
dataset format.
"""
crop_size = np.asarray(crop_size, dtype=np.int32)
bbox = BoxMode.convert(instance["bbox"], instance["bbox_mode"], BoxMode.XYXY_ABS)
center_yx = (bbox[1] + bbox[3]) * 0.5, (bbox[0] + bbox[2]) * 0.5
assert (
image_size[0] >= center_yx[0] and image_size[1] >= center_yx[1]
), "The annotation bounding box is outside of the image!"
assert (
image_size[0] >= crop_size[0] and image_size[1] >= crop_size[1]
), "Crop size is larger than image size!"
min_yx = np.maximum(np.floor(center_yx).astype(np.int32) - crop_size, 0)
max_yx = np.maximum(np.asarray(image_size, dtype=np.int32) - crop_size, 0)
max_yx = np.minimum(max_yx, np.ceil(center_yx).astype(np.int32))
y0 = np.random.randint(min_yx[0], max_yx[0] + 1)
x0 = np.random.randint(min_yx[1], max_yx[1] + 1)
return T.CropTransform(x0, y0, crop_size[1], crop_size[0])
def check_metadata_consistency(key, dataset_names):
"""
Check that the datasets have consistent metadata.
Args:
key (str): a metadata key
dataset_names (list[str]): a list of dataset names
Raises:
AttributeError: if the key does not exist in the metadata
ValueError: if the given datasets do not have the same metadata values defined by key
"""
if len(dataset_names) == 0:
return
logger = logging.getLogger(__name__)
entries_per_dataset = [getattr(MetadataCatalog.get(d), key) for d in dataset_names]
for idx, entry in enumerate(entries_per_dataset):
if entry != entries_per_dataset[0]:
logger.error(
"Metadata '{}' for dataset '{}' is '{}'".format(key, dataset_names[idx], str(entry))
)
logger.error(
"Metadata '{}' for dataset '{}' is '{}'".format(
key, dataset_names[0], str(entries_per_dataset[0])
)
)
raise ValueError("Datasets have different metadata '{}'!".format(key))
def build_augmentation(cfg, is_train):
"""
Create a list of default :class:`Augmentation` from config.
Now it includes resizing and flipping.
Returns:
list[Augmentation]
"""
if is_train:
min_size = cfg.INPUT.MIN_SIZE_TRAIN
max_size = cfg.INPUT.MAX_SIZE_TRAIN
sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING
else:
min_size = cfg.INPUT.MIN_SIZE_TEST
max_size = cfg.INPUT.MAX_SIZE_TEST
sample_style = "choice"
augmentation = [T.ResizeShortestEdge(min_size, max_size, sample_style)]
if is_train and cfg.INPUT.RANDOM_FLIP != "none":
augmentation.append(
T.RandomFlip(
horizontal=cfg.INPUT.RANDOM_FLIP == "horizontal",
vertical=cfg.INPUT.RANDOM_FLIP == "vertical",
)
)
return augmentation
build_transform_gen = build_augmentation
"""
Alias for backward-compatibility.
"""
|