File size: 10,534 Bytes
c02bdcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import packages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os, sys\n",
"\n",
"if sys.platform == \"darwin\":\n",
" os.environ[\"PYTORCH_ENABLE_MPS_FALLBACK\"] = \"1\"\n",
"\n",
"if not \"root_dir\" in globals():\n",
" now_dir = os.getcwd() # skip examples/ipynb\n",
" root_dir = os.path.join(now_dir, \"../../\")\n",
" sys.path.append(root_dir)\n",
" print(\"init root dir to\", root_dir)\n",
"\n",
"import torch\n",
"\n",
"torch._dynamo.config.cache_size_limit = 64\n",
"torch._dynamo.config.suppress_errors = True\n",
"torch.set_float32_matmul_precision(\"high\")\n",
"\n",
"import ChatTTS\n",
"from tools.logger import get_logger\n",
"from tools.normalizer import normalizer_en_nemo_text, normalizer_zh_tn\n",
"from IPython.display import Audio"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Models"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"os.chdir(root_dir)\n",
"\n",
"logger = get_logger(\"ChatTTS\")\n",
"chat = ChatTTS.Chat(logger)\n",
"\n",
"# try to load normalizer\n",
"try:\n",
" chat.normalizer.register(\"en\", normalizer_en_nemo_text())\n",
"except ValueError as e:\n",
" logger.error(e)\n",
"except:\n",
" logger.warning(\"Package nemo_text_processing not found!\")\n",
" logger.warning(\n",
" \"Run: conda install -c conda-forge pynini=2.1.5 && pip install nemo_text_processing\",\n",
" )\n",
"try:\n",
" chat.normalizer.register(\"zh\", normalizer_zh_tn())\n",
"except ValueError as e:\n",
" logger.error(e)\n",
"except:\n",
" logger.warning(\"Package WeTextProcessing not found!\")\n",
" logger.warning(\n",
" \"Run: conda install -c conda-forge pynini=2.1.5 && pip install WeTextProcessing\",\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Here are three choices for loading models,"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1. Load models from Hugging Face (not suitable in CN)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# use force_redownload=True if the weights have been updated.\n",
"chat.load(source=\"huggingface\", force_redownload=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 2. Load models from local directories 'asset' and 'config' (recommend)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chat.load()\n",
"# chat.load(source='local') same as above"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 3. Load models from a custom path"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# write the model path into custom_path\n",
"chat.load(source=\"custom\", custom_path=\"YOUR CUSTOM PATH\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### You can also unload models to save the memory"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"chat.unload()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inference"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Batch infer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"texts = [\n",
" \"So we found being competitive and collaborative was a huge way of staying motivated towards our goals, so one person to call when you fall off, one person who gets you back on then one person to actually do the activity with.\",\n",
"] * 3 + [\n",
" \"我觉得像我们这些写程序的人,他,我觉得多多少少可能会对开源有一种情怀在吧我觉得开源是一个很好的形式。现在其实最先进的技术掌握在一些公司的手里的话,就他们并不会轻易的开放给所有的人用。\"\n",
"] * 3\n",
"\n",
"wavs = chat.infer(texts)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Audio(wavs[0], rate=24_000, autoplay=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Audio(wavs[3], rate=24_000, autoplay=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Custom params"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"params_infer_code = ChatTTS.Chat.InferCodeParams(\n",
" prompt=\"[speed_5]\",\n",
" temperature=0.3,\n",
")\n",
"params_refine_text = ChatTTS.Chat.RefineTextParams(\n",
" prompt=\"[oral_2][laugh_0][break_6]\",\n",
")\n",
"\n",
"wav = chat.infer(\n",
" \"四川美食可多了,有麻辣火锅、宫保鸡丁、麻婆豆腐、担担面、回锅肉、夫妻肺片等,每样都让人垂涎三尺。\",\n",
" params_refine_text=params_refine_text,\n",
" params_infer_code=params_infer_code,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Audio(wav[0], rate=24_000, autoplay=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fix random speaker"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"rand_spk = chat.sample_random_speaker()\n",
"print(rand_spk) # save it for later timbre recovery\n",
"\n",
"params_infer_code = ChatTTS.Chat.InferCodeParams(\n",
" spk_emb=rand_spk,\n",
")\n",
"\n",
"wav = chat.infer(\n",
" \"四川美食确实以辣闻名,但也有不辣的选择。比如甜水面、赖汤圆、蛋烘糕、叶儿粑等,这些小吃口味温和,甜而不腻,也很受欢迎。\",\n",
" params_infer_code=params_infer_code,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Audio(wav[0], rate=24_000, autoplay=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zero shot (simulate speaker)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from tools.audio import load_audio\n",
"\n",
"spk_smp = chat.sample_audio_speaker(load_audio(\"sample.mp3\", 24000))\n",
"print(spk_smp) # save it in order to load the speaker without sample audio next time\n",
"\n",
"params_infer_code = ChatTTS.Chat.InferCodeParams(\n",
" spk_smp=spk_smp,\n",
" txt_smp=\"与sample.mp3内容完全一致的文本转写。\",\n",
")\n",
"\n",
"wav = chat.infer(\n",
" \"四川美食确实以辣闻名,但也有不辣的选择。比如甜水面、赖汤圆、蛋烘糕、叶儿粑等,这些小吃口味温和,甜而不腻,也很受欢迎。\",\n",
" params_infer_code=params_infer_code,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Audio(wav[0], rate=24_000, autoplay=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Two stage control"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"So we found being competitive and collaborative was a huge way of staying motivated towards our goals, so one person to call when you fall off, one person who gets you back on then one person to actually do the activity with.\"\n",
"refined_text = chat.infer(text, refine_text_only=True)\n",
"refined_text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"wav = chat.infer(refined_text, skip_refine_text=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Audio(wav[0], rate=24_000, autoplay=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## LLM Call"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from tools.llm import ChatOpenAI\n",
"\n",
"API_KEY = \"\"\n",
"client = ChatOpenAI(\n",
" api_key=API_KEY, base_url=\"https://api.deepseek.com\", model=\"deepseek-chat\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"user_question = \"四川有哪些好吃的美食呢?\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = client.call(user_question, prompt_version=\"deepseek\")\n",
"text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = client.call(text, prompt_version=\"deepseek_TN\")\n",
"text"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"wav = chat.infer(text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Audio(wav[0], rate=24_000, autoplay=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|