File size: 10,534 Bytes
c02bdcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Import packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os, sys\n",
    "\n",
    "if sys.platform == \"darwin\":\n",
    "    os.environ[\"PYTORCH_ENABLE_MPS_FALLBACK\"] = \"1\"\n",
    "\n",
    "if not \"root_dir\" in globals():\n",
    "    now_dir = os.getcwd()  # skip examples/ipynb\n",
    "    root_dir = os.path.join(now_dir, \"../../\")\n",
    "    sys.path.append(root_dir)\n",
    "    print(\"init root dir to\", root_dir)\n",
    "\n",
    "import torch\n",
    "\n",
    "torch._dynamo.config.cache_size_limit = 64\n",
    "torch._dynamo.config.suppress_errors = True\n",
    "torch.set_float32_matmul_precision(\"high\")\n",
    "\n",
    "import ChatTTS\n",
    "from tools.logger import get_logger\n",
    "from tools.normalizer import normalizer_en_nemo_text, normalizer_zh_tn\n",
    "from IPython.display import Audio"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Load Models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "os.chdir(root_dir)\n",
    "\n",
    "logger = get_logger(\"ChatTTS\")\n",
    "chat = ChatTTS.Chat(logger)\n",
    "\n",
    "# try to load normalizer\n",
    "try:\n",
    "    chat.normalizer.register(\"en\", normalizer_en_nemo_text())\n",
    "except ValueError as e:\n",
    "    logger.error(e)\n",
    "except:\n",
    "    logger.warning(\"Package nemo_text_processing not found!\")\n",
    "    logger.warning(\n",
    "        \"Run: conda install -c conda-forge pynini=2.1.5 && pip install nemo_text_processing\",\n",
    "    )\n",
    "try:\n",
    "    chat.normalizer.register(\"zh\", normalizer_zh_tn())\n",
    "except ValueError as e:\n",
    "    logger.error(e)\n",
    "except:\n",
    "    logger.warning(\"Package WeTextProcessing not found!\")\n",
    "    logger.warning(\n",
    "        \"Run: conda install -c conda-forge pynini=2.1.5 && pip install WeTextProcessing\",\n",
    "    )"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Here are three choices for loading models,"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 1. Load models from Hugging Face (not suitable in CN)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# use force_redownload=True if the weights have been updated.\n",
    "chat.load(source=\"huggingface\", force_redownload=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 2. Load models from local directories 'asset' and 'config' (recommend)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "chat.load()\n",
    "# chat.load(source='local') same as above"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### 3. Load models from a custom path"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# write the model path into custom_path\n",
    "chat.load(source=\"custom\", custom_path=\"YOUR CUSTOM PATH\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### You can also unload models to save the memory"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "chat.unload()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Inference"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Batch infer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "texts = [\n",
    "    \"So we found being competitive and collaborative was a huge way of staying motivated towards our goals, so one person to call when you fall off, one person who gets you back on then one person to actually do the activity with.\",\n",
    "] * 3 + [\n",
    "    \"我觉得像我们这些写程序的人,他,我觉得多多少少可能会对开源有一种情怀在吧我觉得开源是一个很好的形式。现在其实最先进的技术掌握在一些公司的手里的话,就他们并不会轻易的开放给所有的人用。\"\n",
    "] * 3\n",
    "\n",
    "wavs = chat.infer(texts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Audio(wavs[0], rate=24_000, autoplay=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Audio(wavs[3], rate=24_000, autoplay=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Custom params"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "params_infer_code = ChatTTS.Chat.InferCodeParams(\n",
    "    prompt=\"[speed_5]\",\n",
    "    temperature=0.3,\n",
    ")\n",
    "params_refine_text = ChatTTS.Chat.RefineTextParams(\n",
    "    prompt=\"[oral_2][laugh_0][break_6]\",\n",
    ")\n",
    "\n",
    "wav = chat.infer(\n",
    "    \"四川美食可多了,有麻辣火锅、宫保鸡丁、麻婆豆腐、担担面、回锅肉、夫妻肺片等,每样都让人垂涎三尺。\",\n",
    "    params_refine_text=params_refine_text,\n",
    "    params_infer_code=params_infer_code,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Audio(wav[0], rate=24_000, autoplay=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Fix random speaker"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "rand_spk = chat.sample_random_speaker()\n",
    "print(rand_spk)  # save it for later timbre recovery\n",
    "\n",
    "params_infer_code = ChatTTS.Chat.InferCodeParams(\n",
    "    spk_emb=rand_spk,\n",
    ")\n",
    "\n",
    "wav = chat.infer(\n",
    "    \"四川美食确实以辣闻名,但也有不辣的选择。比如甜水面、赖汤圆、蛋烘糕、叶儿粑等,这些小吃口味温和,甜而不腻,也很受欢迎。\",\n",
    "    params_infer_code=params_infer_code,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Audio(wav[0], rate=24_000, autoplay=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Zero shot (simulate speaker)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.audio import load_audio\n",
    "\n",
    "spk_smp = chat.sample_audio_speaker(load_audio(\"sample.mp3\", 24000))\n",
    "print(spk_smp)  # save it in order to load the speaker without sample audio next time\n",
    "\n",
    "params_infer_code = ChatTTS.Chat.InferCodeParams(\n",
    "    spk_smp=spk_smp,\n",
    "    txt_smp=\"与sample.mp3内容完全一致的文本转写。\",\n",
    ")\n",
    "\n",
    "wav = chat.infer(\n",
    "    \"四川美食确实以辣闻名,但也有不辣的选择。比如甜水面、赖汤圆、蛋烘糕、叶儿粑等,这些小吃口味温和,甜而不腻,也很受欢迎。\",\n",
    "    params_infer_code=params_infer_code,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Audio(wav[0], rate=24_000, autoplay=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Two stage control"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text = \"So we found being competitive and collaborative was a huge way of staying motivated towards our goals, so one person to call when you fall off, one person who gets you back on then one person to actually do the activity with.\"\n",
    "refined_text = chat.infer(text, refine_text_only=True)\n",
    "refined_text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "wav = chat.infer(refined_text, skip_refine_text=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Audio(wav[0], rate=24_000, autoplay=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## LLM Call"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.llm import ChatOpenAI\n",
    "\n",
    "API_KEY = \"\"\n",
    "client = ChatOpenAI(\n",
    "    api_key=API_KEY, base_url=\"https://api.deepseek.com\", model=\"deepseek-chat\"\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "user_question = \"四川有哪些好吃的美食呢?\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text = client.call(user_question, prompt_version=\"deepseek\")\n",
    "text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text = client.call(text, prompt_version=\"deepseek_TN\")\n",
    "text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "wav = chat.infer(text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "Audio(wav[0], rate=24_000, autoplay=True)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}