--- license: apache-2.0 tags: - image-classification - generated_from_trainer model-index: - name: vit-base-cifar10 results: [] --- # vit-base-cifar10 This model is a fine-tuned version of [nateraw/vit-base-patch16-224-cifar10](https://huggingface.co/nateraw/vit-base-patch16-224-cifar10) on the cifar10-upside-down dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2348 - eval_accuracy: 0.9134 - eval_runtime: 157.4172 - eval_samples_per_second: 127.051 - eval_steps_per_second: 1.988 - epoch: 0.02 - step: 26 ## Model description Vision Transformer ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6