File size: 1,974 Bytes
9adce4c
 
 
 
4310846
9adce4c
 
 
4310846
 
 
 
 
9adce4c
 
 
 
 
 
 
 
 
 
 
4310846
 
 
 
 
 
 
 
 
 
 
 
 
 
9adce4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: other
base_model: deepseek-ai/deepseek-math-7b-base
tags:
- alignment-handbook
- trl
- orpo
- generated_from_trainer
- trl
- orpo
- generated_from_trainer
datasets:
- zfz1/my_preference_gsm8k_deepseek
model-index:
- name: deepseek-8b-orpo-full
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/thuzfz1/huggingface/runs/dtbyb3v7)
# deepseek-8b-orpo-full

This model is a fine-tuned version of [deepseek-ai/deepseek-math-7b-base](https://huggingface.co/deepseek-ai/deepseek-math-7b-base) on the zfz1/my_preference_gsm8k_deepseek dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0797
- Rewards/chosen: -0.0089
- Rewards/rejected: -0.2196
- Rewards/accuracies: 1.0
- Rewards/margins: 0.2107
- Logps/rejected: -2.1960
- Logps/chosen: -0.0885
- Logits/rejected: 13.8906
- Logits/chosen: 8.5947
- Nll Loss: 0.0786
- Log Odds Ratio: -0.0204
- Log Odds Chosen: 5.3533

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 43
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2

### Training results



### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1