# This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from safetensors import safe_open from safetensors.torch import load_model, save_model, load_file from collections import defaultdict import copy import json import os from os.path import exists, join, isdir from dataclasses import dataclass, field import sys from typing import Optional, Dict, Sequence import numpy as np from tqdm import tqdm import logging import torch import transformers from torch.nn.utils.rnn import pad_sequence import argparse from transformers import ( AutoTokenizer, AutoModelForCausalLM, LineByLineTextDataset, set_seed, Seq2SeqTrainer, Trainer, LlamaTokenizerFast ) from trl import SFTTrainer from datasets import load_dataset import evaluate from peft import ( LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict, PeftModel ) from peft.tuners.lora import LoraLayer from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR from auto_gptq.utils.peft_utils import get_gptq_peft_model, GPTQLoraConfig from auto_gptq import AutoGPTQForCausalLM from auto_gptq.nn_modules.qlinear import GeneralQuantLinear torch.backends.cuda.matmul.allow_tf32 = True logger = logging.getLogger(__name__) IGNORE_INDEX = -100 DEFAULT_PAD_TOKEN = "[PAD]" import os os.environ["TOKENIZERS_PARALLELISM"] = "false" def prepare_model_for_int8_training(model, use_gradient_checkpointing=True): r""" This method wraps the entire protocol for preparing a model before running a training. This includes: 1- Cast the layernorm in fp32 2- making output embedding layer require grads 3- Add the upcasting of the lm head to fp32 Args: model, (`transformers.PreTrainedModel`): The loaded model from `transformers` """ for name, param in model.named_parameters(): # freeze base model's layers param.requires_grad = False if use_gradient_checkpointing: # For backward compatibility if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) # enable gradient checkpointing for memory efficiency model.gradient_checkpointing_enable() return model @dataclass class ModelArguments: model_path: Optional[str] = field( default="./src/" ) src_lora_path: Optional[str] = field( default=None, ) trust_remote_code: Optional[bool] = field( default=False, metadata={"help": "Enable unpickling of arbitrary code in AutoModelForCausalLM#from_pretrained."} ) @dataclass class DataArguments: eval_dataset_size: int = field( default=1024, metadata={"help": "Size of validation dataset."} ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) offload_folder: Optional[str] = field( default=None, metadata={ "help": "Offload folder " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) source_max_len: int = field( default=1024, metadata={"help": "Maximum source sequence length. Sequences will be right padded (and possibly truncated)."}, ) target_max_len: int = field( default=1024, metadata={"help": "Maximum target sequence length. Sequences will be right padded (and possibly truncated)."}, ) dataset: str = field( default='alpaca', metadata={"help": "Which dataset to finetune on. See datamodule for options."} ) @dataclass class TrainingArguments(transformers.Seq2SeqTrainingArguments): cache_dir: Optional[str] = field( default=None ) train_on_source: Optional[bool] = field( default=False, metadata={"help": "Whether to train on the input in addition to the target text."} ) mmlu_split: Optional[str] = field( default='eval', metadata={"help": "The MMLU split to run on"} ) mmlu_dataset: Optional[str] = field( default='mmlu-fs', metadata={"help": "MMLU dataset to use: options are `mmlu-zs` for zero-shot or `mmlu-fs` for few shot."} ) do_mmlu_eval: Optional[bool] = field( default=False, metadata={"help": "Whether to run the MMLU evaluation."} ) max_mmlu_samples: Optional[int] = field( default=None, metadata={"help": "If set, only evaluates on `max_mmlu_samples` of the MMMLU dataset."} ) mmlu_source_max_len: int = field( default=2048, metadata={"help": "Maximum source sequence length for mmlu."} ) full_finetune: bool = field( default=False, metadata={"help": "Finetune the entire model without adapters."} ) adam8bit: bool = field( default=False, metadata={"help": "Use 8-bit adam."} ) lora_r: int = field( default=64, metadata={"help": "Lora R dimension."} ) lora_alpha: float = field( default=16, metadata={"help": " Lora alpha."} ) lora_dropout: float = field( default=0.0, metadata={"help":"Lora dropout."} ) max_memory_MB: int = field( default=24000, metadata={"help": "Free memory per gpu."} ) report_to: str = field( default='none', metadata={"help": "To use wandb or something else for reporting."} ) output_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'}) optim: str = field(default='paged_adamw_32bit', metadata={"help": 'The optimizer to be used'}) per_device_train_batch_size: int = field(default=1, metadata={"help": 'The training batch size per GPU. Increase for better speed.'}) gradient_accumulation_steps: int = field(default=16, metadata={"help": 'How many gradients to accumulate before to perform an optimizer step'}) max_steps: int = field(default=0, metadata={"help": 'How many optimizer update steps to take'}) weight_decay: float = field(default=0.0, metadata={"help": 'The L2 weight decay rate of AdamW'}) # use lora dropout instead for regularization if needed learning_rate: float = field(default=0.0002, metadata={"help": 'The learnign rate'}) remove_unused_columns: bool = field(default=False, metadata={"help": 'Removed unused columns. Needed to make this codebase work.'}) max_grad_norm: float = field(default=0.3, metadata={"help": 'Gradient clipping max norm. This is tuned and works well for all models tested.'}) gradient_checkpointing: bool = field(default=True, metadata={"help": 'Use gradient checkpointing. You want to use this.'}) do_train: bool = field(default=True, metadata={"help": 'To train or not to train, that is the question?'}) lr_scheduler_type: str = field(default='constant', metadata={"help": 'Learning rate schedule. Constant a bit better than cosine, and has advantage for analysis'}) warmup_ratio: float = field(default=0.03, metadata={"help": 'Fraction of steps to do a warmup for'}) logging_steps: int = field(default=10, metadata={"help": 'The frequency of update steps after which to log the loss'}) group_by_length: bool = field(default=True, metadata={"help": 'Group sequences into batches with same length. Saves memory and speeds up training considerably.'}) save_strategy: str = field(default='steps', metadata={"help": 'When to save checkpoints'}) save_steps: int = field(default=250, metadata={"help": 'How often to save a model'}) save_total_limit: int = field(default=40, metadata={"help": 'How many checkpoints to save before the oldest is overwritten'}) def find_all_linear_names(args, model): cls = GeneralQuantLinear if not(args.full_finetune) else torch.nn.Linear lora_module_names = set() for name, module in model.named_modules(): if isinstance(module, cls): names = name.split('.') lora_module_names.add(names[0] if len(names) == 1 else names[-1]) if 'lm_head' in lora_module_names: # needed for 16-bit lora_module_names.remove('lm_head') return list(lora_module_names) class SavePeftModelCallback(transformers.TrainerCallback): def save_model(self, args, state, kwargs): print('Saving PEFT checkpoint...') if state.best_model_checkpoint is not None: checkpoint_folder = os.path.join(state.best_model_checkpoint, "adapter_model") else: checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") peft_model_path = os.path.join(checkpoint_folder, "adapter_model") kwargs["model"].save_pretrained(peft_model_path) pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin") if os.path.exists(pytorch_model_path): os.remove(pytorch_model_path) def on_save(self, args, state, control, **kwargs): self.save_model(args, state, kwargs) return control def on_train_end(self, args, state, control, **kwargs): def touch(fname, times=None): with open(fname, 'a'): os.utime(fname, times) touch(join(args.output_dir, 'completed')) self.save_model(args, state, kwargs) def get_accelerate_model(args, checkpoint_dir): n_gpus = torch.cuda.device_count() max_memory = f'{args.max_memory_MB}MB' max_memory = {i: max_memory for i in range(n_gpus)} if args.full_finetune: assert args.bits in [16, 32] print(f'loading base model {args.model_path}...') model = AutoGPTQForCausalLM.from_quantized( args.model_path, low_cpu_mem_usage=True, device_map='auto', max_memory=max_memory, trust_remote_code=args.trust_remote_code, inject_fused_attention = True, inject_fused_mlp = False, use_triton=False, warmup_triton=False, offload_folder='offload', trainable=True ) model.model.quantize_config = model.quantize_config model.train() setattr(model, 'model_parallel', True) setattr(model, 'is_parallelizable', True) modules = find_all_linear_names(args, model) print("Modules: ", modules) model.config.torch_dtype=torch.float16 #if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32)) if not args.full_finetune: model = prepare_model_for_int8_training(model, use_gradient_checkpointing=args.gradient_checkpointing) if args.gradient_checkpointing: model.gradient_checkpointing_enable() config = GPTQLoraConfig( r=args.lora_r, lora_alpha=args.lora_alpha, target_modules=modules, lora_dropout=args.lora_dropout, bias="none", task_type="CAUSAL_LM", ) if not args.full_finetune: if checkpoint_dir is not None: print("Loading adapters from checkpoint.") model = PeftModel.from_pretrained(model, join(checkpoint_dir, 'adapter_model')) for name, p in model.named_parameters(): if 'lora' in name: print(name, p.sum()) else: print(f'adding LoRA modules...') model = get_gptq_peft_model(model, config, auto_find_all_linears=True, train_mode=True) if args.gradient_checkpointing: if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module, input, output): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) for name, module in model.named_modules(): if isinstance(module, LoraLayer): if args.bf16: module = module.to(torch.bfloat16) if 'norm' in name: module = module.to(torch.float32) if 'lm_head' in name or 'embed_tokens' in name: if hasattr(module, 'weight'): if args.bf16 and module.weight.dtype == torch.float32: module = module.to(torch.bfloat16) return model def print_trainable_parameters(args, model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() try: trainable_params /= (32//model.quantize_config.bits) except: pass print(f"trainable params: {trainable_params} || all params: {all_param} || trainable: {100 * trainable_params / all_param}") def smart_tokenizer_and_embedding_resize( special_tokens_dict: Dict, tokenizer: transformers.PreTrainedTokenizer, model: transformers.PreTrainedModel, ): """Resize tokenizer and embedding. Note: This is the unoptimized version that may make your embedding size not be divisible by 64. """ num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) model.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = model.get_input_embeddings().weight.data output_embeddings = model.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg @dataclass class DataCollatorForCausalLM(object): tokenizer: transformers.PreTrainedTokenizer source_max_len: int target_max_len: int train_on_source: bool predict_with_generate: bool def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: # Extract elements sources = [example['input'] for example in instances] targets = [f"{example['output']}{self.tokenizer.eos_token}" for example in instances] # Tokenize tokenized_sources_with_prompt = self.tokenizer( sources, max_length=self.source_max_len, truncation=True, ) tokenized_targets = self.tokenizer( targets, max_length=self.target_max_len, truncation=True, add_special_tokens=False, ) # Build the input and labels for causal LM input_ids = [] labels = [] for tokenized_source, tokenized_target in zip( tokenized_sources_with_prompt['input_ids'], tokenized_targets['input_ids'] ): if not self.predict_with_generate: input_ids.append(torch.tensor(tokenized_source + tokenized_target)) if not self.train_on_source: labels.append( torch.tensor([IGNORE_INDEX for _ in range(len(tokenized_source))] + copy.deepcopy(tokenized_target)) ) else: labels.append(torch.tensor(copy.deepcopy(tokenized_source + tokenized_target))) else: input_ids.append(torch.tensor(tokenized_source)) # Apply padding input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) if not self.predict_with_generate else None data_dict = { 'input_ids': input_ids, 'attention_mask':input_ids.ne(self.tokenizer.pad_token_id), } if labels is not None: data_dict['labels'] = labels return data_dict def extract_unnatural_instructions_data(examples, extract_reformulations=False): out = { 'input': [], 'output': [], } for example_instances in examples['instances']: for instance in example_instances: out['input'].append(instance['instruction_with_input']) out['output'].append(instance['output']) if extract_reformulations: for example_reformulations in examples['reformulations']: if example_reformulations is not None: for instance in example_reformulations: out['input'].append(instance['instruction_with_input']) out['output'].append(instance['output']) return out def make_data_module(tokenizer: transformers.PreTrainedTokenizer, args) -> Dict: # Load dataset. print(args.dataset) if args.dataset == 'txt': from transformers import TextDataset with open("txt.txt","r",encoding="utf-8") as f: data = f.readlines() tmp = '' gdata = [] current_length = 0 print("Creating groups...") for s in data: if current_length + len(s) <= 512: tmp = tmp + s + "\n" current_length += len(s) else: gdata.append(tmp) tmp = s current_length = len(s) l = list(map(lambda x: { 'input': '', 'output': x }, gdata)) from datasets import Dataset dataset=Dataset.from_list(l) elif args.dataset == 'dataset': dataset = load_dataset("json", data_files='dataset.json') if args.do_train: if args.dataset == 'txt': train_dataset = dataset else: train_dataset = dataset['train'] if args.max_train_samples is not None and len(train_dataset) > args.max_train_samples: train_dataset = train_dataset.select(range(args.max_train_samples)) if args.group_by_length: train_dataset = train_dataset.map(lambda x: {'length': len(x['input']) + len(x['output'])}) data_collator = DataCollatorForCausalLM( tokenizer=tokenizer, source_max_len=args.source_max_len, target_max_len=args.target_max_len, train_on_source=args.train_on_source, predict_with_generate=args.predict_with_generate, ) return dict( train_dataset=train_dataset if args.do_train else None, eval_dataset=eval_dataset if args.do_eval else None, predict_dataset=eval_dataset if args.do_predict else None, data_collator=data_collator ) def get_last_checkpoint(checkpoint_dir): if isdir(checkpoint_dir): is_completed = exists(join(checkpoint_dir, 'completed')) if is_completed: return None, True # already finished max_step = 0 for filename in os.listdir(checkpoint_dir): if isdir(join(checkpoint_dir, filename)) and filename.startswith('checkpoint'): max_step = max(max_step, int(filename.replace('checkpoint-', ''))) print("MX: ", max_step, " - ", filename) if max_step == 0: return None, is_completed # training started, but no checkpoint checkpoint_dir = join(checkpoint_dir, f'checkpoint-{max_step}') print(f"Found a previous checkpoint at: {checkpoint_dir}") return checkpoint_dir, is_completed # checkpoint found! return None, False # first training def train(): hfparser = transformers.HfArgumentParser(( ModelArguments, DataArguments, TrainingArguments )) model_args, data_args, training_args, extra_args = \ hfparser.parse_args_into_dataclasses(return_remaining_strings=True) # training_args.generation_config = transformers.GenerationConfig(**vars(generation_args)) args = argparse.Namespace( **vars(model_args), **vars(data_args), **vars(training_args) ) checkpoint_dir, completed_training = get_last_checkpoint(args.output_dir) if completed_training: print('Detected that training was already completed!') model = get_accelerate_model(args, checkpoint_dir) training_args.skip_loading_checkpoint_weights=True load_existing_lora = os.path.exists('src_lora/adapter_model.safetensors') if load_existing_lora: print(f"Loading existing LoRA") adapters_weights = load_file('src_lora/adapter_model.safetensors') set_peft_model_state_dict(model, adapters_weights) model.config.use_cache = False print_trainable_parameters(args, model) print('loaded model') set_seed(args.seed) # Tokenizer tokenizer = AutoTokenizer.from_pretrained( args.model_path, cache_dir=args.cache_dir, padding_side="right", use_fast=True, ) if tokenizer.pad_token is None: smart_tokenizer_and_embedding_resize( special_tokens_dict=dict(pad_token=DEFAULT_PAD_TOKEN), tokenizer=tokenizer, model=model, ) if isinstance(tokenizer, LlamaTokenizerFast): # LLaMA tokenizer may not have correct special tokens set. # Check and add them if missing to prevent them from being parsed into different tokens. # Note that these are present in the vocabulary. # Note also that `model.config.pad_token_id` is 0 which corresponds to `` token. tokenizer.add_special_tokens( { "eos_token": tokenizer.convert_ids_to_tokens(model.config.eos_token_id), "bos_token": tokenizer.convert_ids_to_tokens(model.config.bos_token_id), "unk_token": tokenizer.convert_ids_to_tokens(model.config.pad_token_id), } ) data_module = make_data_module(tokenizer=tokenizer, args=args) trainer = Seq2SeqTrainer( # trainer = SFTTrainer( model=model, tokenizer=tokenizer, args=training_args, **{k:v for k,v in data_module.items() if k != 'predict_dataset'}, ) # Callbacks if not args.full_finetune: trainer.add_callback(SavePeftModelCallback) # Verifying the datatypes. dtypes = {} for _, p in model.named_parameters(): dtype = p.dtype if dtype not in dtypes: dtypes[dtype] = 0 dtypes[dtype] += p.numel() total = 0 for k, v in dtypes.items(): total+= v for k, v in dtypes.items(): print(k, v, v/total) all_metrics = {"run_name": args.run_name} # Training if args.do_train: train_result = trainer.train(resume_from_checkpoint=False) metrics = train_result.metrics trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() all_metrics.update(metrics) if (args.do_train): with open(os.path.join(args.output_dir, "metrics.json"), "w") as fout: fout.write(json.dumps(all_metrics)) if __name__ == "__main__": train()