|
--- |
|
license: mit |
|
base_model: cahya/bert-base-indonesian-NER |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- indonlu_nergrit |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: belajarner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: indonlu_nergrit |
|
type: indonlu_nergrit |
|
config: indonlu_nergrit_source |
|
split: validation |
|
args: indonlu_nergrit_source |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.7716312056737589 |
|
- name: Recall |
|
type: recall |
|
value: 0.8217522658610272 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7959034381858083 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9477048970719857 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# belajarner |
|
|
|
This model is a fine-tuned version of [cahya/bert-base-indonesian-NER](https://huggingface.co/cahya/bert-base-indonesian-NER) on the indonlu_nergrit dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2621 |
|
- Precision: 0.7716 |
|
- Recall: 0.8218 |
|
- F1: 0.7959 |
|
- Accuracy: 0.9477 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 209 | 0.1633 | 0.7678 | 0.8142 | 0.7903 | 0.9476 | |
|
| No log | 2.0 | 418 | 0.1623 | 0.7631 | 0.8127 | 0.7871 | 0.9462 | |
|
| 0.1633 | 3.0 | 627 | 0.1978 | 0.7535 | 0.8172 | 0.7841 | 0.9459 | |
|
| 0.1633 | 4.0 | 836 | 0.2103 | 0.7573 | 0.8202 | 0.7875 | 0.9460 | |
|
| 0.0423 | 5.0 | 1045 | 0.2236 | 0.7757 | 0.8097 | 0.7923 | 0.9487 | |
|
| 0.0423 | 6.0 | 1254 | 0.2529 | 0.7843 | 0.8293 | 0.8062 | 0.9474 | |
|
| 0.0423 | 7.0 | 1463 | 0.2559 | 0.77 | 0.8142 | 0.7915 | 0.9467 | |
|
| 0.0136 | 8.0 | 1672 | 0.2621 | 0.7716 | 0.8218 | 0.7959 | 0.9477 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.2 |
|
|