|
--- |
|
datasets: |
|
- openbmb/UltraFeedback |
|
language: |
|
- en |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
tags: |
|
- autoquant |
|
- UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3 |
|
- gptq |
|
model-index: |
|
- name: Llama-3-Instruct-8B-SPPO-Iter3 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 68.28 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 29.74 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 7.33 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 2.01 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 3.09 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 29.38 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3 |
|
name: Open LLM Leaderboard |
|
--- |
|
Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675) |
|
|
|
# Llama-3-Instruct-8B-SPPO-Iter3 |
|
|
|
This model was developed using [Self-Play Preference Optimization](https://arxiv.org/abs/2405.00675) at iteration 3, based on the [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) architecture as starting point. We utilized the prompt sets from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, splited to 3 parts for 3 iterations by [snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset](https://huggingface.co/datasets/snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset). All responses used are synthetic. |
|
|
|
|
|
## Links to Other Models |
|
- [Llama-3-Instruct-8B-SPPO-Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) |
|
- [Llama-3-Instruct-8B-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) |
|
- [Llama-3-Instruct-8B-SPPO-Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) |
|
|
|
### Model Description |
|
|
|
- Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets. |
|
- Language(s) (NLP): Primarily English |
|
- License: Apache-2.0 |
|
- Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct |
|
|
|
|
|
## [AlpacaEval Leaderboard Evaluation Results](https://tatsu-lab.github.io/alpaca_eval/) |
|
|
|
|
|
| Model | LC. Win Rate | Win Rate | Avg. Length | |
|
|-------------------------------------------|:------------:|:--------:|:-----------:| |
|
|[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) |31.73 |31.74 | 1962 |
|
|[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) |35.15 |35.98 | 2021 |
|
|[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) |**38.77** |**39.85** | 2066 |
|
|
|
|
|
|
|
## [Open LLM Leaderboard Evaluation Results](https://github.com/EleutherAI/lm-evaluation-harness) |
|
|
|
Results are reported by using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) v0.4.1 |
|
|
|
| | arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average | |
|
|--------|---------------|----------------|------------|-------|-----------|-------|---------| |
|
|[Llama-3-8B-SPPO Iter1](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter1) | 63.82 | 54.96 | 76.40 | 75.44 | 79.80 | 65.65 | 69.35 |
|
|[Llama-3-8B-SPPO Iter2](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter2) | 64.93 | 56.48 | 76.87 | 75.13 | 80.39 | 65.67 | 69.91 |
|
|[Llama-3-8B-SPPO Iter3](https://huggingface.co/UCLA-AGI/Llama-3-Instruct-8B-SPPO-Iter3) | 65.19 | 58.04 | 77.11 | 74.91 | 80.86 | 65.60 | **70.29** |
|
|
|
|
|
# [Open LLM Leaderboard 2 Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/UCLA-AGI__Llama-3-Instruct-8B-SPPO-Iter3-details) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |23.68| |
|
|IFEval (0-Shot) |68.28| |
|
|BBH (3-Shot) |29.74| |
|
|MATH Lvl 5 (4-Shot)| 7.33| |
|
|GPQA (0-shot) | 2.01| |
|
|MuSR (0-shot) | 3.09| |
|
|MMLU-PRO (5-shot) |29.38| |
|
|
|
|
|
### Training hyperparameters |
|
The following hyperparameters were used during training: |
|
|
|
- learning_rate: 5e-07 |
|
- eta: 1000 |
|
- per_device_train_batch_size: 8 |
|
- gradient_accumulation_steps: 1 |
|
- seed: 42 |
|
- distributed_type: deepspeed_zero3 |
|
- num_devices: 8 |
|
- optimizer: RMSProp |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_train_epochs: 6.0 (stop at epoch=1.0) |
|
|
|
|
|
|
|
|
|
## Citation |
|
``` |
|
@misc{wu2024self, |
|
title={Self-Play Preference Optimization for Language Model Alignment}, |
|
author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan}, |
|
year={2024}, |
|
eprint={2405.00675}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
|