HodgePodge / README.md
Nope Nope
Upload folder using huggingface_hub
8c6f1a5 verified
|
raw
history blame
1.97 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - microsoft/Phi-3-mini-128k-instruct
  - gradientai/Llama-3-8B-Instruct-Gradient-1048k
  - ise-uiuc/Magicoder-DS-6.7B
base_model:
  - microsoft/Phi-3-mini-128k-instruct
  - gradientai/Llama-3-8B-Instruct-Gradient-1048k
  - ise-uiuc/Magicoder-DS-6.7B

HodgePodge

HodgePodge is a merge of the following models using LazyMergekit:

🧩 Configuration

slices:
  - sources:
      - model: microsoft/Phi-3-mini-128k-instruct
        layer_range: [0, 32]
      - model: gradientai/Llama-3-8B-Instruct-Gradient-1048k
        layer_range: [0, 32]
      - model: ise-uiuc/Magicoder-DS-6.7B
        layer_range: [0, 32]
merge_method: modelstock
base_model: microsoft/Phi-3-mini-128k-instruct
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "fuzzymonstereatinganapple/HodgePodge"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])