metadata
license: apache-2.0
tags:
- moe
- merge
- deepseek-ai/deepseek-coder-6.7b-instruct
- ise-uiuc/Magicoder-S-CL-7B
- WizardLM/WizardMath-7B-V1.0
- WizardLM/WizardCoder-Python-7B-V1.0
model-index:
- name: Magician-MoE-4x7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 28.24
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FelixChao/Magician-MoE-4x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 30.06
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FelixChao/Magician-MoE-4x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.67
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FelixChao/Magician-MoE-4x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 0
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FelixChao/Magician-MoE-4x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.88
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FelixChao/Magician-MoE-4x7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=FelixChao/Magician-MoE-4x7B
name: Open LLM Leaderboard
Magician-MoE-4x7B
Magician-MoE-4x7B is a Mixure of Experts (MoE) made with the following models:
- deepseek-ai/deepseek-coder-6.7b-instruct
- ise-uiuc/Magicoder-S-CL-7B
- WizardLM/WizardMath-7B-V1.0
- WizardLM/WizardCoder-Python-7B-V1.0
🧩 Configuration
base_model: ise-uiuc/Magicoder-S-CL-7B
gate_mode: cheap_embed
experts:
- source_model: deepseek-ai/deepseek-coder-6.7b-instruct
positive_prompts: ["You are an AI coder","coding","Java expert"]
- source_model: ise-uiuc/Magicoder-S-CL-7B
positive_prompts: ["You are an AI programmer","programming","C++ expert"]
- source_model: WizardLM/WizardMath-7B-V1.0
positive_prompts: ["Math problem solving","Think step by step","Math expert"]
- source_model: WizardLM/WizardCoder-Python-7B-V1.0
positive_prompts: ["Great at Deep learning","Algorithm and Data Structure","Python expert"]
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "FelixChao/Magician-MoE-4x7B"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 22.14 |
AI2 Reasoning Challenge (25-Shot) | 28.24 |
HellaSwag (10-Shot) | 30.06 |
MMLU (5-Shot) | 24.67 |
TruthfulQA (0-shot) | 0.00 |
Winogrande (5-shot) | 49.88 |
GSM8k (5-shot) | 0.00 |