|
--- |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
datasets: |
|
- generator |
|
library_name: peft |
|
license: llama3.1 |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: ft-raft-hotpot |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ft-raft-hotpot |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the generator dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8450 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 1399 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.61 | 0.0148 | 20 | 1.3531 | |
|
| 1.1917 | 0.0295 | 40 | 1.0786 | |
|
| 1.0438 | 0.0443 | 60 | 1.0227 | |
|
| 1.0087 | 0.0590 | 80 | 0.9971 | |
|
| 0.9835 | 0.0738 | 100 | 0.9795 | |
|
| 0.9753 | 0.0885 | 120 | 0.9651 | |
|
| 0.9586 | 0.1033 | 140 | 0.9521 | |
|
| 0.9504 | 0.1180 | 160 | 0.9419 | |
|
| 0.937 | 0.1328 | 180 | 0.9312 | |
|
| 0.9242 | 0.1475 | 200 | 0.9203 | |
|
| 0.9073 | 0.1623 | 220 | 0.9111 | |
|
| 0.9017 | 0.1771 | 240 | 0.9023 | |
|
| 0.8956 | 0.1918 | 260 | 0.8939 | |
|
| 0.8824 | 0.2066 | 280 | 0.8856 | |
|
| 0.8776 | 0.2213 | 300 | 0.8784 | |
|
| 0.8755 | 0.2361 | 320 | 0.8710 | |
|
| 0.8746 | 0.2508 | 340 | 0.8646 | |
|
| 0.8569 | 0.2656 | 360 | 0.8592 | |
|
| 0.8499 | 0.2803 | 380 | 0.8547 | |
|
| 0.8514 | 0.2951 | 400 | 0.8509 | |
|
| 0.8541 | 0.3098 | 420 | 0.8484 | |
|
| 0.856 | 0.3246 | 440 | 0.8465 | |
|
| 0.8397 | 0.3394 | 460 | 0.8455 | |
|
| 0.8402 | 0.3541 | 480 | 0.8451 | |
|
| 0.8497 | 0.3689 | 500 | 0.8450 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |