|
--- |
|
tags: |
|
- gptq |
|
- 4bit |
|
- int4 |
|
- gptqmodel |
|
- modelcloud |
|
- llama-3.1 |
|
- 8b |
|
- instruct |
|
license: llama3.1 |
|
--- |
|
This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel). |
|
|
|
- **bits**: 4 |
|
- **group_size**: 128 |
|
- **desc_act**: true |
|
- **static_groups**: false |
|
- **sym**: true |
|
- **lm_head**: false |
|
- **damp_percent**: 0.005 |
|
- **true_sequential**: true |
|
- **model_name_or_path**: "" |
|
- **model_file_base_name**: "model" |
|
- **quant_method**: "gptq" |
|
- **checkpoint_format**: "gptq" |
|
- **meta**: |
|
- **quantizer**: "gptqmodel:0.9.9-dev0" |
|
|
|
## Example: |
|
```python |
|
from transformers import AutoTokenizer |
|
from gptqmodel import GPTQModel |
|
|
|
model_name = "ModelCloud/Meta-Llama-3.1-8B-Instruct-gptq-4bit" |
|
|
|
prompt = [{"role": "user", "content": "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
model = GPTQModel.from_quantized(model_name) |
|
|
|
input_tensor = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt") |
|
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=100) |
|
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) |
|
|
|
print(result) |
|
``` |
|
|
|
## lm-eval benchmark |
|
|
|
``` |
|
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |
|
|---------------------------------------|------:|------|-----:|----------|---|-----:|---|-----:| |
|
|arc_challenge | 1|none | 0|acc |↑ |0.4889|± |0.0146| |
|
| | |none | 0|acc_norm |↑ |0.5265|± |0.0146| |
|
|arc_easy | 1|none | 0|acc |↑ |0.7908|± |0.0083| |
|
| | |none | 0|acc_norm |↑ |0.7702|± |0.0086| |
|
|boolq | 2|none | 0|acc |↑ |0.8404|± |0.0064| |
|
|hellaswag | 1|none | 0|acc |↑ |0.5748|± |0.0049| |
|
| | |none | 0|acc_norm |↑ |0.7718|± |0.0042| |
|
|lambada_openai | 1|none | 0|acc |↑ |0.7110|± |0.0063| |
|
| | |none | 0|perplexity|↓ |4.0554|± |0.0955| |
|
|mmlu | 1|none | |acc |↑ |0.6411|± |0.0038| |
|
| - humanities | 1|none | |acc |↑ |0.5896|± |0.0068| |
|
| - formal_logic | 0|none | 0|acc |↑ |0.4762|± |0.0447| |
|
| - high_school_european_history | 0|none | 0|acc |↑ |0.7273|± |0.0348| |
|
| - high_school_us_history | 0|none | 0|acc |↑ |0.8088|± |0.0276| |
|
| - high_school_world_history | 0|none | 0|acc |↑ |0.8270|± |0.0246| |
|
| - international_law | 0|none | 0|acc |↑ |0.7851|± |0.0375| |
|
| - jurisprudence | 0|none | 0|acc |↑ |0.7593|± |0.0413| |
|
| - logical_fallacies | 0|none | 0|acc |↑ |0.7607|± |0.0335| |
|
| - moral_disputes | 0|none | 0|acc |↑ |0.7197|± |0.0242| |
|
| - moral_scenarios | 0|none | 0|acc |↑ |0.4045|± |0.0164| |
|
| - philosophy | 0|none | 0|acc |↑ |0.7074|± |0.0258| |
|
| - prehistory | 0|none | 0|acc |↑ |0.6975|± |0.0256| |
|
| - professional_law | 0|none | 0|acc |↑ |0.4817|± |0.0128| |
|
| - world_religions | 0|none | 0|acc |↑ |0.7953|± |0.0309| |
|
| - other | 1|none | |acc |↑ |0.7100|± |0.0078| |
|
| - business_ethics | 0|none | 0|acc |↑ |0.6700|± |0.0473| |
|
| - clinical_knowledge | 0|none | 0|acc |↑ |0.7660|± |0.0261| |
|
| - college_medicine | 0|none | 0|acc |↑ |0.6590|± |0.0361| |
|
| - global_facts | 0|none | 0|acc |↑ |0.3600|± |0.0482| |
|
| - human_aging | 0|none | 0|acc |↑ |0.6547|± |0.0319| |
|
| - management | 0|none | 0|acc |↑ |0.8447|± |0.0359| |
|
| - marketing | 0|none | 0|acc |↑ |0.8803|± |0.0213| |
|
| - medical_genetics | 0|none | 0|acc |↑ |0.7100|± |0.0456| |
|
| - miscellaneous | 0|none | 0|acc |↑ |0.8161|± |0.0139| |
|
| - nutrition | 0|none | 0|acc |↑ |0.7124|± |0.0259| |
|
| - professional_accounting | 0|none | 0|acc |↑ |0.4787|± |0.0298| |
|
| - professional_medicine | 0|none | 0|acc |↑ |0.7279|± |0.0270| |
|
| - virology | 0|none | 0|acc |↑ |0.5181|± |0.0389| |
|
| - social sciences | 1|none | |acc |↑ |0.7312|± |0.0078| |
|
| - econometrics | 0|none | 0|acc |↑ |0.4035|± |0.0462| |
|
| - high_school_geography | 0|none | 0|acc |↑ |0.8232|± |0.0272| |
|
| - high_school_government_and_politics| 0|none | 0|acc |↑ |0.8653|± |0.0246| |
|
| - high_school_macroeconomics | 0|none | 0|acc |↑ |0.6128|± |0.0247| |
|
| - high_school_microeconomics | 0|none | 0|acc |↑ |0.7227|± |0.0291| |
|
| - high_school_psychology | 0|none | 0|acc |↑ |0.8422|± |0.0156| |
|
| - human_sexuality | 0|none | 0|acc |↑ |0.7634|± |0.0373| |
|
| - professional_psychology | 0|none | 0|acc |↑ |0.6585|± |0.0192| |
|
| - public_relations | 0|none | 0|acc |↑ |0.6182|± |0.0465| |
|
| - security_studies | 0|none | 0|acc |↑ |0.7306|± |0.0284| |
|
| - sociology | 0|none | 0|acc |↑ |0.8358|± |0.0262| |
|
| - us_foreign_policy | 0|none | 0|acc |↑ |0.8600|± |0.0349| |
|
| - stem | 1|none | |acc |↑ |0.5623|± |0.0085| |
|
| - abstract_algebra | 0|none | 0|acc |↑ |0.3800|± |0.0488| |
|
| - anatomy | 0|none | 0|acc |↑ |0.6222|± |0.0419| |
|
| - astronomy | 0|none | 0|acc |↑ |0.7039|± |0.0372| |
|
| - college_biology | 0|none | 0|acc |↑ |0.7778|± |0.0348| |
|
| - college_chemistry | 0|none | 0|acc |↑ |0.5400|± |0.0501| |
|
| - college_computer_science | 0|none | 0|acc |↑ |0.5300|± |0.0502| |
|
| - college_mathematics | 0|none | 0|acc |↑ |0.3200|± |0.0469| |
|
| - college_physics | 0|none | 0|acc |↑ |0.4608|± |0.0496| |
|
| - computer_security | 0|none | 0|acc |↑ |0.7800|± |0.0416| |
|
| - conceptual_physics | 0|none | 0|acc |↑ |0.5617|± |0.0324| |
|
| - electrical_engineering | 0|none | 0|acc |↑ |0.6138|± |0.0406| |
|
| - elementary_mathematics | 0|none | 0|acc |↑ |0.4365|± |0.0255| |
|
| - high_school_biology | 0|none | 0|acc |↑ |0.7839|± |0.0234| |
|
| - high_school_chemistry | 0|none | 0|acc |↑ |0.5665|± |0.0349| |
|
| - high_school_computer_science | 0|none | 0|acc |↑ |0.6600|± |0.0476| |
|
| - high_school_mathematics | 0|none | 0|acc |↑ |0.4407|± |0.0303| |
|
| - high_school_physics | 0|none | 0|acc |↑ |0.4371|± |0.0405| |
|
| - high_school_statistics | 0|none | 0|acc |↑ |0.5602|± |0.0339| |
|
| - machine_learning | 0|none | 0|acc |↑ |0.4643|± |0.0473| |
|
|openbookqa | 1|none | 0|acc |↑ |0.3180|± |0.0208| |
|
| | |none | 0|acc_norm |↑ |0.4140|± |0.0220| |
|
|piqa | 1|none | 0|acc |↑ |0.7878|± |0.0095| |
|
| | |none | 0|acc_norm |↑ |0.7971|± |0.0094| |
|
|rte | 1|none | 0|acc |↑ |0.6751|± |0.0282| |
|
|truthfulqa_mc1 | 2|none | 0|acc |↑ |0.3403|± |0.0166| |
|
|winogrande | 1|none | 0|acc |↑ |0.7206|± |0.0126| |
|
|
|
| Groups |Version|Filter|n-shot|Metric| |Value | |Stderr| |
|
|------------------|------:|------|------|------|---|-----:|---|-----:| |
|
|mmlu | 1|none | |acc |↑ |0.6411|± |0.0038| |
|
| - humanities | 1|none | |acc |↑ |0.5896|± |0.0068| |
|
| - other | 1|none | |acc |↑ |0.7100|± |0.0078| |
|
| - social sciences| 1|none | |acc |↑ |0.7312|± |0.0078| |
|
| - stem | 1|none | |acc |↑ |0.5623|± |0.0085| |
|
``` |