Uploaded model
- Developed by: atasoglu
- License: apache-2.0
- Finetuned from model : unsloth/gemma-2-2b-bnb-4bit
This gemma2 model was trained 2x faster with Unsloth and Huggingface's TRL library.
Usage
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "atasoglu/gemma-2-2b-tr",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
alpaca_prompt = """Aşağıda verilen talimat ve giriş ifadelerine uygun bir cevap yaz.
### Talimat:
Aşağıdaki programlama dillerinden hangisi yapay zeka çalışmak için daha uygundur?
Sebebini açıkla.
### Giriş:
Python, C++, Java, Rust
### Cevap:
"""
inputs = tokenizer(alpaca_prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
**inputs,
max_new_tokens=128,
do_sample=True,
temperature=0.2,
repetition_penalty=1.15,
top_k=20,
top_p=0.7,
)
generated_tokens = outputs[:, inputs.input_ids.shape[1]:]
response = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
print(response)
# Output: ['C++ veya Python en iyi seçenektir çünkü bu iki dilde çok sayıda yapay zeka araçları vardır. Bu araçlar, veri analizi, öğrenme algoritmaları ve karar verme süreçlerini kolaylaştırır. Ayrıca, her ikisinin de güçlü bir kütüphanesi olması da önemlidir.']
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.