text
stringlengths
105
19.5k
label
int64
0
4
label_text
stringclasses
5 values
The Minimum Information Required About a Glycomics Experiment (MIRAGE) initiative is part of the Minimum Information Standards and specifically applies to guidelines for reporting (describing metadata) on a glycomics experiment. The initiative is supported by the Beilstein Institute for the Advancement of Chemical Sciences. The MIRAGE project focuses on the development of publication guidelines for interaction and structural glycomics data as well as the development of data exchange formats. The project was launched in 2011 in Seattle and set off with the description of the aims of the MIRAGE project.
2
Carbohydrates
Sensor-based sorting is a coarse particle separation technology applied in mining for the dry separation of bulk materials. The functional principle does not limit the technology to any kind of segment or mineral application but makes the technical viability mainly depend on the liberation characteristics at the size range , which is usually sorted. If physical liberation is present there is a good potential that one of the sensors available on industrial scale sorting machines can differentiate between valuable and non-valuable particles. The separation is based on features measured with a detection technology that are used to derive a yes/no decision for actuation of usually pneumatic impulses. Sensor-based sorting is a disruptive technology in the mining industry which is universally applicable for all commodities. A comprehensive study examines both the technologys potential and its limitations, whilst providing a framework for application development and evaluation. All relevant aspects, from sampling to plant design and integration into mining and mineral processing systems, are covered. Other terminologies used in the industry include ore sorting, automated sorting, electronic sorting, and optical sorting'.
1
Separation Processes
A record-long of human transplant organ preservation with machine perfusion of a liver for 3 days rather than usually <12 hours was reported in 2022. It could possibly be extended to 10 days and prevent substantial cell damage by low temperature preservation methods. Alternative approaches include novel cryoprotectant solvents. There is a novel organ perfusion system under development that can restore, i.e. on the cellular level, multiple vital (pig) organs one hour after death (during which the body had a prolonged warm ischaemia), and a similar method/system for reviving (pig) brains hours after death. The system for cellular recovery could be used to preserve donor organs or for revival-treatments in medical emergencies.
0
Cryobiology
Costs of IVF can be broken down into direct and indirect costs. Direct costs include the medical treatments themselves, including doctor consultations, medications, ultrasound scanning, laboratory tests, the actual IVF procedure, and any associated hospital charges and administrative costs. Indirect costs includes the cost of addressing any complications with treatments, compensation for the gestational surrogate, patients' travel costs, and lost hours of productivity. These costs can be exaggerated by the increasing age of the woman undergoing IVF treatment (particularly those over the age of 40), and the increase costs associated with multiple births. For instance, a pregnancy with twins can cost up to three times that of a singleton pregnancy. While some insurances cover one cycle of IVF, it takes multiple cycles of IVF to have a successful outcome. A study completed in Northern California reveals that the IVF procedure alone that results in a successful outcome costs $61,377, and this can be more costly with the use of a donor egg. The cost of IVF rather reflects the costliness of the underlying healthcare system than the regulatory or funding environment, and ranges, on average for a standard IVF cycle and in 2006 United States dollars, between $12,500 in the United States to $4,000 in Japan. In Ireland, IVF costs around €4,000, with fertility drugs, if required, costing up to €3,000. The cost per live birth is highest in the United States ($41,000) and United Kingdom ($40,000) and lowest in Scandinavia and Japan (both around $24,500). The high cost of IVF is also a barrier to access for disabled individuals, who typically have lower incomes, face higher health care costs, and seek health care services more often than non-disabled individuals. Navigating insurance coverage for transgender expectant parents presents a unique challenge. Insurance plans are designed to cater towards a specific population, meaning that some plans can provide adequate coverage for gender-affirming care but fail to provide fertility services for transgender patients. Additionally, insurance coverage is constructed around a person's legally recognised sex and not their anatomy; thus, transgender people may not get coverage for the services they need, including transgender men for fertility services.
0
Cryobiology
He obtained his undergraduate and graduate degrees from the University of Manitoba in Winnipeg, Canada. Dr. Wowk obtained his PhD in physics in 1997. His graduate studies included work in online portal imaging for radiotherapy at the Manitoba Cancer Treatment and Research Foundation (now Cancer Care Manitoba), and work on artifact reduction for functional magnetic resonance imaging at the National Research Council of Canada. His work in the latter field is cited by several text books, including Functional MRI which includes an image he obtained of magnetic field changes inside the human body caused by respiration.
0
Cryobiology
These materials generally show non-linear behavior with a change in applied magnetic field or stress. For small magnetic fields, linear piezomagnetic constitutive behavior is enough. Non-linear magnetic behavior is captured using a classical macroscopic model such as the Preisach model and Jiles-Atherton model. For capturing magneto-mechanical behavior, Armstrong proposed an "energy average" approach. More recently, Wahi et al. have proposed a computationally efficient constitutive model wherein constitutive behavior is captured using a "locally linearizing" scheme.
3
Magnetic Ordering
Another class of UV fluorescent bulb is designed for use in "bug zapper" flying insect traps. Insects are attracted to the UV light, which they are able to see, and are then electrocuted by the device. These bulbs use the same UV-A emitting phosphor blend as the filtered blacklight, but since they do not need to suppress visible light output, they do not use a purple filter material in the bulb. Plain glass blocks out less of the visible mercury emission spectrum, making them appear light blue-violet to the naked eye. These lamps are referred to by the designation "blacklight" or "BL" in some North American lighting catalogs. These types are not suitable for applications which require the low visible light output of "BLB" tubes lamps.
4
Ultraviolet Radiation
Although sedimentation might occur in tanks of other shapes, removal of accumulated solids is easiest with conveyor belts in rectangular tanks or with scrapers rotating around the central axis of circular tanks. Settling basins and clarifiers should be designed based on the settling velocity (v) of the smallest particle to be theoretically 100% removed. The overflow rate is defined as: :Overflow rate (v ) = Flow of water (Q (m/s)) /(Surface area of settling basin (A(m)) In many countries this value is named as surface loading in m/h per m. Overflow rate is often used for flow over an edge (for example a weir) in the unit m/h per m. The unit of overflow rate is usually meters (or feet) per second, a velocity. Any particle with settling velocity (v) greater than the overflow rate will settle out, while other particles will settle in the ratio v/v. There are recommendations on the overflow rates for each design that ideally take into account the change in particle size as the solids move through the operation: * Quiescent zones: per second * Full-flow basins: per second * Off-line basins: per second However, factors such as flow surges, wind shear, scour, and turbulence reduce the effectiveness of settling. To compensate for these less than ideal conditions, it is recommended doubling the area calculated by the previous equation. It is also important to equalize flow distribution at each point across the cross-section of the basin. Poor inlet and outlet designs can produce extremely poor flow characteristics for sedimentation. Settling basins and clarifiers can be designed as long rectangles (Figure 1.a), that are hydraulically more stable and easier to control for large volumes. Circular clarifiers (Fig. 1.b) work as a common thickener (without the usage of rakes), or as upflow tanks (Fig. 1.c). Sedimentation efficiency does not depend on the tank depth. If the forward velocity is low enough so that the settled material does not re-suspend from the tank floor, the area is still the main parameter when designing a settling basin or clarifier, taking care that the depth is not too low.
1
Separation Processes
In larger urban centres, studies have noted that lesbian, gay, bisexual, transgender and queer (LGBTQ+) populations are among the fastest-growing users of fertility care. IVF is increasingly being used to allow lesbian and other LGBT couples to share in the reproductive process through a technique called reciprocal IVF. The eggs of one partner are used to create embryos which the other partner carries through pregnancy. For gay male couples, many elect to use IVF through gestational surrogacy, where one partners sperm is used to fertilise a donor ovum, and the resulting embryo is transplanted into a surrogate carriers womb. There are various IVF options available for same-sex couples including, but not limited to, IVF with donor sperm, IVF with a partners oocytes, reciprocal IVF, IVF with donor eggs, and IVF with gestational surrogate. IVF with donor sperm can be considered traditional IVF for lesbian couples, but reciprocal IVF or using a partners oocytes are other options for lesbian couples trying to conceive to include both partners in the biological process. Using a partners oocytes is an option for partners who are unsuccessful in conceiving with their own, and reciprocal IVF involves undergoing reproduction with a donor egg and sperm that is then transferred to a partner who will gestate. Donor IVF involves conceiving with a third partys eggs. Typically, for gay male couples hoping to use IVF, the common techniques are using IVF with donor eggs and gestational surrogates.
0
Cryobiology
The main potential factors that influence pregnancy (and live birth) rates in IVF have been suggested to be maternal age, duration of infertility or subfertility, bFSH and number of oocytes, all reflecting ovarian function. Optimal age is 23–39 years at time of treatment. Biomarkers that affect the pregnancy chances of IVF include: * Antral follicle count, with higher count giving higher success rates. * Anti-Müllerian hormone levels, with higher levels indicating higher chances of pregnancy, as well as of live birth after IVF, even after adjusting for age. * Level of DNA fragmentation as measured, e.g. by Comet assay, advanced maternal age and semen quality. * People with ovary-specific FMR1 genotypes including het-norm/low have significantly decreased pregnancy chances in IVF. *Progesterone elevation on the day of induction of final maturation is associated with lower pregnancy rates in IVF cycles in women undergoing ovarian stimulation using GnRH analogues and gonadotrophins. At this time, compared to a progesterone level below 0.8 ng/ml, a level between 0.8 and 1.1 ng/ml confers an odds ratio of pregnancy of approximately 0.8, and a level between 1.2 and 3.0 ng/ml confers an odds ratio of pregnancy of between 0.6 and 0.7. On the other hand, progesterone elevation does not seem to confer a decreased chance of pregnancy in frozen–thawed cycles and cycles with egg donation. * Characteristics of cells from the cumulus oophorus and the membrana granulosa, which are easily aspirated during oocyte retrieval. These cells are closely associated with the oocyte and share the same microenvironment, and the rate of expression of certain genes in such cells are associated with higher or lower pregnancy rate. * An endometrial thickness (EMT) of less than 7 mm decreases the pregnancy rate by an odds ratio of approximately 0.4 compared to an EMT of over 7 mm. However, such low thickness rarely occurs, and any routine use of this parameter is regarded as not justified. Other determinants of outcome of IVF include: * As maternal age increases, the likelihood of conception decreases and the chance of miscarriage increases. *With increasing paternal age, especially 50 years and older, the rate of blastocyst formation decreases. * Tobacco smoking reduces the chances of IVF producing a live birth by 34% and increases the risk of an IVF pregnancy miscarrying by 30%. * A body mass index (BMI) over 27 causes a 33% decrease in likelihood to have a live birth after the first cycle of IVF, compared to those with a BMI between 20 and 27. Also, pregnant people who are obese have higher rates of miscarriage, gestational diabetes, hypertension, thromboembolism and problems during delivery, as well as leading to an increased risk of fetal congenital abnormality. Ideal body mass index is 19–30. * Salpingectomy or laparoscopic tubal occlusion before IVF treatment increases chances for people with hydrosalpinges. * Success with previous pregnancy and/or live birth increases chances * Low alcohol/caffeine intake increases success rate * The number of embryos transferred in the treatment cycle * Embryo quality * Some studies also suggest that autoimmune disease may also play a role in decreasing IVF success rates by interfering with the proper implantation of the embryo after transfer. Aspirin is sometimes prescribed to people for the purpose of increasing the chances of conception by IVF, but there was no evidence to show that it is safe and effective. A 2013 review and meta analysis of randomised controlled trials of acupuncture as an adjuvant therapy in IVF found no overall benefit, and concluded that an apparent benefit detected in a subset of published trials where the control group (those not using acupuncture) experienced a lower than average rate of pregnancy requires further study, due to the possibility of publication bias and other factors. A Cochrane review came to the result that endometrial injury performed in the month prior to ovarian induction appeared to increase both the live birth rate and clinical pregnancy rate in IVF compared with no endometrial injury. There was no evidence of a difference between the groups in miscarriage, multiple pregnancy or bleeding rates. Evidence suggested that endometrial injury on the day of oocyte retrieval was associated with a lower live birth or ongoing pregnancy rate. Intake of antioxidants (such as N-acetyl-cysteine, melatonin, vitamin A, vitamin C, vitamin E, folic acid, myo-inositol, zinc or selenium) has not been associated with a significantly increased live birth rate or clinical pregnancy rate in IVF according to Cochrane reviews. The review found that oral antioxidants given to the sperm donor with male factor or unexplained subfertility may improve live birth rates, but more evidence is needed. A Cochrane review in 2015 came to the result that there is no evidence identified regarding the effect of preconception lifestyle advice on the chance of a live birth outcome.
0
Cryobiology
Elevated O-GlcNAc has been associated with diabetes. Pancreatic β cells synthesize and secrete insulin to regulate blood glucose levels. One study found that inhibition of OGA with streptozotocin followed by glucosamine treatment resulted in O-GlcNAc accumulation and apoptosis in β cells; a subsequent study showed that a galactose-based analogue of streptozotocin was unable to inhibit OGA but still resulted in apoptosis, suggesting that the apoptotic effects of streptozotocin are not directly due to OGA inhibition. O-GlcNAc has been suggested to attenuate insulin signaling. In 3T3-L1 adipocytes, OGA inhibition with PUGNAc inhibited insulin-mediated glucose uptake. PUGNAc treatment also inhibited insulin-stimulated Akt T308 phosphorylation and downstream GSK3β S9 phosphorylation. In a later study, insulin stimulation of COS-7 cells caused OGT to localize to the plasma membrane. Inhibition of PI3K with wortmannin reversed this effect, suggesting dependence on phosphatidylinositol(3,4,5)-triphosphate. Increasing O-GlcNAc levels by subjecting cells to high glucose conditions or PUGNAc treatment inhibited insulin-stimulated phosphorylation of Akt T308 and Akt activity. IRS1 phosphorylation at S307 and S632/S635, which is associated with attenuated insulin signaling, was enhanced. Subsequent experiments in mice with adenoviral delivery of OGT showed that OGT overexpression negatively regulated insulin signaling in vivo. Many components of the insulin signaling pathway, including β-catenin, IR-β, IRS1, Akt, PDK1, and the p110α subunit of PI3K were found to be directly modified by O-GlcNAc. Insulin signaling has also been reported to lead to OGT tyrosine phosphorylation and OGT activation, resulting in increased O-GlcNAc levels. As PUGNAc also inhibits lysosomal β-hexosaminidases, the OGA-selective inhibitor NButGT was developed to further probe the relationship between O-GlcNAc and insulin signaling in 3T3-L1 adipocytes. This study also found that PUGNAc resulted in impaired insulin signaling, but NButGT did not, as measured by changes in phosphorylation of Akt T308, suggesting that the effects observed with PUGNAc may be due to off-target effects besides OGA inhibition.
2
Carbohydrates
Current RO membranes, thin-film composite (TFC) polyamide membranes, are being studied to find ways of improving their permeability. Through new imaging methods, researchers were able to make 3D models of membranes and examine how water flowed through them. They found that TFC membranes with areas of low flow significantly decreased water permeability. By ensuring uniformity of the membranes and allowing water to flow continuously without slowing down, membrane permeability could be improved by 30%-40%.
1
Separation Processes
A hysteresis is sometimes intentionally added to computer algorithms. The field of user interface design has borrowed the term hysteresis to refer to times when the state of the user interface intentionally lags behind the apparent user input. For example, a menu that was drawn in response to a mouse-over event may remain on-screen for a brief moment after the mouse has moved out of the trigger region and the menu region. This allows the user to move the mouse directly to an item on the menu, even if part of that direct mouse path is outside of both the trigger region and the menu region. For instance, right-clicking on the desktop in most Windows interfaces will create a menu that exhibits this behavior.
3
Magnetic Ordering
The Beckett skimmer has some similarities to the downdraft skimmer but introduced a foam nozzle to produce the flow of air bubbles. The name Beckett comes from the patented foam nozzle developed and sold by the Beckett Corporation (United States), although similar foam nozzle designs are sold by other companies outside the United States (e.g. Sicce (Italy)). Instead of using the plastic media that is found in downdraft skimmer designs, the Beckett skimmer uses design concepts from previous generations of skimmers, specifically the downdraft skimmer and the venturi skimmer (the Beckett 1408 Foam Nozzle is a modified 4 port venturi) to produce a hybrid that is capable of using powerful pressure rated water pumps and quickly processing large amounts of aquarium water in a short period of time. Commercial Beckett skimmers come in single Beckett, dual Beckett, and quad Beckett designs. Well engineered Beckett skimmers are quiet and reliable. Due to the advances in pump technologies and introduction of DC pumps, the concerns of powerful pumps taking up additional space, introducing additional noise, and using more electricity have all been alleviated. Unlike the Downdraft and Spray Induction skimmers, Beckett skimmer designs are produced by a number of companies in the United States and elsewhere and are not known to be restricted by patents.
1
Separation Processes
The physical process of sedimentation (the act of depositing sediment) has applications in water treatment, whereby gravity acts to remove suspended solids from water. Solid particles entrained by the turbulence of moving water may be removed naturally by sedimentation in the still water of lakes and oceans. Settling basins are ponds constructed for the purpose of removing entrained solids by sedimentation. Clarifiers are tanks built with mechanical means for continuous removal of solids being deposited by sedimentation; however, clarification does not remove dissolved solids.
1
Separation Processes
It is also helpful in diagnosing: * Fungal infections. Some forms of tinea, such as Trichophyton tonsurans, do not fluoresce. * Bacterial infections **Corynebacterium minutissimum is coral red **Pseudomonas is yellow-green * Cutibacterium acnes, a bacterium involved in acne causation, exhibits an orange glow under a Wood's lamp.
4
Ultraviolet Radiation
Trehalose is a nonreducing sugar formed from two glucose units joined by a 1–1 alpha bond, giving it the name The bonding makes trehalose very resistant to acid hydrolysis, and therefore is stable in solution at high temperatures, even under acidic conditions. The bonding keeps nonreducing sugars in closed-ring form, such that the aldehyde or ketone end groups do not bind to the lysine or arginine residues of proteins (a process called glycation). Trehalose is less soluble than sucrose, except at high temperatures (>80 °C). Trehalose forms a rhomboid crystal as the dihydrate, and has 90% of the calorific content of sucrose in that form. Anhydrous forms of trehalose readily regain moisture to form the dihydrate. Anhydrous forms of trehalose can show interesting physical properties when heat-treated. Trehalose aqueous solutions show a concentration-dependent clustering tendency. Owing to their ability to form hydrogen bonds, they self-associate in water to form clusters of various sizes. All-atom molecular dynamics simulations showed that concentrations of 1.5–2.2 molar allow trehalose molecular clusters to percolate and form large and continuous aggregates. Trehalose directly interacts with nucleic acids, facilitates melting of double stranded DNA and stabilizes single-stranded nucleic acids.
2
Carbohydrates
Agriculture- Gravity separation tables are used for the removal of impurities, admixture, insect damage and immature kernels from the following examples: wheat, barley, oilseed rape, peas, beans, cocoa beans, linseed. They can be used to separate and standardize coffee beans, cocoa beans, peanuts, corn, peas, rice, wheat, sesame and other food grains. The gravity separator separates products of same size but with difference in specific weight. It has a vibrating rectangular deck, which makes it easy for the product to travel a longer distance, ensuring improved quality of the end product. The pressurized air in the deck enables the material to split according to its specific weight. As a result, the heavier particles travel to the higher level while the lighter particles travel to the lower level of the deck. It comes with easily adjustable air fans to control the volume of air distribution at different areas of the vibrating deck to meet the air supply needs of the deck. The table inclination, speed of eccentric motion and the feed rate can be precisely adjusted to achieve smooth operation of the machine.
1
Separation Processes
An important parameter in wet scrubbing systems is the rate of liquid flow. It is common in wet scrubber terminology to express the liquid flow as a function of the gas flow rate that is being treated. This is commonly called the liquid-to-gas ratio (L/G ratio) and uses the units of gallons per 1,000 actual cubic feet or litres per cubic metre (L/m). Expressing the amount of liquid used as a ratio enables systems of different sizes to be readily compared. For particulate removal, the liquid-to-gas ratio is a function of the mechanical design of the system; while for gas absorption this ratio gives an indication of the difficulty of removing a pollutant. Most wet scrubbers used for particulate control operate with liquid-to-gas ratios in the range of 4 to 20 gallons per 1,000 actual cubic foot (0.5 to 3 litres per actual cubic metre). Depending on scrubber design, a minimum volume of liquid is required to "wet" the scrubber internals and create sufficient collection targets. After a certain optimum point, adding excess liquid to a particulate wet scrubber does not increase efficiency and in fact, could be counter-productive by causing excessive pressure loss. Liquid-to-gas ratios for gas absorption are often higher, in the range of 20 to 40 gallons per 1,000 actual cubic foot (3 to 6 litres per actual cubic metre). L/G ratio illustrates a number of points about the choice of wet scrubbers used for gas absorption. For example, because flue-gas desulfurization systems must deal with heavy particulate loadings, open, simple designs (such as venturi, spray chamber and moving bed) are used. Also, the liquid-to-gas ratio for the absorption process is higher than for particle removal and gas velocities are kept low to enhance the absorption process. Solubility is a very important factor affecting the amount of a pollutant that can be absorbed. Solubility governs the amount of liquid required (liquid-to-gas ratio) and the necessary contact time. More soluble gases require less liquid. Also, more soluble gases will be absorbed faster.
1
Separation Processes
The Catholic Church opposes all kinds of assisted reproductive technology and artificial contraception, on the grounds that they separate the procreative goal of marital sex from the goal of uniting married couples. The Catholic Church permits the use of a small number of reproductive technologies and contraceptive methods such as natural family planning, which involves charting ovulation times, and allows other forms of reproductive technologies that allow conception to take place from normative sexual intercourse, such as a fertility lubricant. Pope Benedict XVI had publicly re-emphasised the Catholic Church's opposition to in vitro fertilisation, saying that it replaces love between a husband and wife. The Catechism of the Catholic Church, in accordance with the Catholic understanding of natural law, teaches that reproduction has an "inseparable connection" to the sexual union of married couples. In addition, the church opposes IVF because it might result in the disposal of embryos; in Catholicism, an embryo is viewed as an individual with a soul that must be treated as a person. The Catholic Church maintains that it is not objectively evil to be infertile, and advocates adoption as an option for such couples who still wish to have children. Hindus welcome IVF as a gift for those who are unable to bear children and have declared doctors related to IVF to be conducting punya as there are several characters who were claimed to be born without intercourse, mainly Kaurav and five Pandavas. Regarding the response to IVF by Islam, a general consensus from the contemporary Sunni scholars concludes that IVF methods are immoral and prohibited. However, Gad El-Hak Ali Gad El-Hak's ART fatwa includes that: *IVF of an egg from the wife with the sperm of her husband and the transfer of the fertilised egg back to the uterus of the wife is allowed, provided that the procedure is indicated for a medical reason and is carried out by an expert physician. *Since marriage is a contract between the wife and husband during the span of their marriage, no third party should intrude into the marital functions of sex and procreation. This means that a third party donor is not acceptable, whether he or she is providing sperm, eggs, embryos, or a uterus. The use of a third party is tantamount to zina, or adultery. Within the Orthodox Jewish community the concept is debated as there is little precedent in traditional Jewish legal textual sources. Regarding laws of sexuality, religious challenges include masturbation (which may be regarded as "seed wasting"), laws related to sexual activity and menstruation (niddah) and the specific laws regarding intercourse. An additional major issue is that of establishing paternity and lineage. For a baby conceived naturally, the fathers identity is determined by a legal presumption (chazakah) of legitimacy: rov biot achar habaal – a womans sexual relations are assumed to be with her husband. Regarding an IVF child, this assumption does not exist and as such Rabbi Eliezer Waldenberg (among others) requires an outside supervisor to positively identify the father. Reform Judaism has generally approved IVF.
0
Cryobiology
Sugars in wine are at the heart of what makes winemaking possible. During the process of fermentation, sugars from wine grapes are broken down and converted by yeast into alcohol (ethanol) and carbon dioxide. Grapes accumulate sugars as they grow on the grapevine through the translocation of sucrose molecules that are produced by photosynthesis from the leaves. During ripening the sucrose molecules are hydrolyzed (separated) by the enzyme invertase into glucose and fructose. By the time of harvest, between 15 and 25% of the grape will be composed of simple sugars. Both glucose and fructose are six-carbon sugars but three-, four-, five- and seven-carbon sugars are also present in the grape. Not all sugars are fermentable, with sugars like the five-carbon arabinose, rhamnose and xylose still being present in the wine after fermentation. Very high sugar content will effectively kill the yeast once a certain (high) alcohol content is reached. For these reasons, no wine is ever fermented completely "dry" (meaning without any residual sugar). Sugars role in dictating the final alcohol content of the wine (and such its resulting body and "mouth-feel") sometimes encourages winemakers to add sugar (usually sucrose) during winemaking in a process known as chaptalization solely in order to boost the alcohol content – chaptalization does not increase the sweetness' of a wine.
2
Carbohydrates
The contact angle formed between a liquid and solid phase will exhibit a range of contact angles that are possible. There are two common methods for measuring this range of contact angles. The first method is referred to as the tilting base method. Once a drop is dispensed on the surface with the surface level, the surface is then tilted from 0° to 90°. As the drop is tilted, the downhill side will be in a state of imminent wetting while the uphill side will be in a state of imminent dewetting. As the tilt increases the downhill contact angle will increase and represents the advancing contact angle while the uphill side will decrease; this is the receding contact angle. The values for these angles just prior to the drop releasing will typically represent the advancing and receding contact angles. The difference between these two angles is the contact angle hysteresis. The second method is often referred to as the add/remove volume method. When the maximum liquid volume is removed from the drop without the interfacial area decreasing the receding contact angle is thus measured. When volume is added to the maximum before the interfacial area increases, this is the advancing contact angle. As with the tilt method, the difference between the advancing and receding contact angles is the contact angle hysteresis. Most researchers prefer the tilt method; the add/remove method requires that a tip or needle stay embedded in the drop which can affect the accuracy of the values, especially the receding contact angle.
3
Magnetic Ordering
In magnetics, the maximum energy product is an important figure-of-merit for the strength of a permanent magnet material. It is often denoted and is typically given in units of either (kilojoules per cubic meter, in SI electromagnetism) or (mega-gauss-oersted, in gaussian electromagnetism). 1 MGOe is equivalent to . During the 20th century, the maximum energy product of commercially available magnetic materials rose from around 1 MGOe (e.g. in KS Steel) to over 50 MGOe (in neodymium magnets). Other important permanent magnet properties include the remanence () and coercivity (); these quantities are also determined from the saturation loop and are related to the maximum energy product, though not directly.
3
Magnetic Ordering
All pregnancies can be risky, but there are greater risk for birthing parents who are older and are over the age of 40. As people get older, they are more likely to develop conditions such as gestational diabetes and pre-eclampsia. If the birthing parent does conceive over the age of 40, their offspring may be of lower birth weight, and more likely to requires intensive care. Because of this, the increased risk is a sufficient cause for concern. The high incidence of caesarean in older patients is commonly regarded as a risk. Those conceiving at 40 have a greater risk of gestational hypertension and premature birth. The offspring is at risk when being born from older mothers, and the risks associated with being conceived through IVF. Adriana Iliescu held the record for a while as the oldest woman to give birth using IVF and a donor egg, when she gave birth in 2004 at the age of 66. In September 2019, a 74-year-old woman became the oldest-ever to give birth after she delivered twins at a hospital in Guntur, Andhra Pradesh.
0
Cryobiology
The original method of protein skimming, running pressurized air through a diffuser to produce large quantities of micro bubbles, remains a viable, effective, and economic choice, although newer technologies may require lower maintenance. The air stone is most often an oblong, partially hollowed block of wood, most often of the genus Tilia. The most popular wooden air-stones for skimmers are made from limewood (Tilia europaea or European limewood) although basswood (Tilia americana or American Linden), works as well, may be cheaper and is often more readily available. The wooden blocks are drilled, tapped, fitted with an air fitting, and connected by air tubing to one or more air pumps delivering at least 1 cfm. The wooden air stone is placed at the bottom of a tall column of water. The tank water is pumped into the column, allowed to pass by the rising bubbles, and back into the tank. To get enough contact time with the bubble, these units can be many feet in height. Air stone protein skimmers may be constructed as a DIY project from pvc pipes and fittings at low cost [http://www.angelfire.com/ok/dog1/skimmer.html] [http://www.hawkfish.org/snailman/diy8inskimmer.htm] and with varying degrees of complexity [https://web.archive.org/web/20121225063946/http://ozreef.org/diy_plans/protein_skimmers/air_stone_protein_skimmer.html]. Air stone protein skimmers require powerful air pumps which are often power hungry, loud, and hot, leading to an increase in the aquarium water temperatures. While this method has been around for many years, due to more efficient technologies emerging, many regard it as inefficient current uses in larger systems or systems with large bio-loads.
1
Separation Processes
Twenty irregular tetrahedra pack with a common vertex in such a way that the twelve outer vertices form a regular icosahedron. Indeed, the icosahedron edge length l is slightly longer than the circumsphere radius r (l ≈ 1.05r). There is a solution with regular tetrahedra if the space is not Euclidean, but spherical. It is the polytope {3,3,5}, using the Schläfli notation, also known as the 600-cell. There are one hundred and twenty vertices which all belong to the hypersphere S with radius equal to the golden ratio (φ = ) if the edges are of unit length. The six hundred cells are regular tetrahedra grouped by five around a common edge and by twenty around a common vertex. This structure is called a polytope (see Coxeter) which is the general name in higher dimension in the series containing polygons and polyhedra. Even if this structure is embedded in four dimensions, it has been considered as a three dimensional (curved) manifold. This point is conceptually important for the following reason. The ideal models that have been introduced in the curved Space are three dimensional curved templates. They look locally as three dimensional Euclidean models. So, the {3,3,5} polytope, which is a tiling by tetrahedra, provides a very dense atomic structure if atoms are located on its vertices. It is therefore naturally used as a template for amorphous metals, but one should not forget that it is at the price of successive idealizations.
3
Magnetic Ordering
Cryoimmunotherapy, also referred to as cryoimmunology, is an oncological treatment for various cancers that combines cryoablation of tumor with immunotherapy treatment. In-vivo cryoablation of a tumor, alone, can induce an immunostimulatory, systemic anti-tumor response, resulting in a cancer vaccine—the abscopal effect. Thus, cryoablation of tumors is a way of achieving autologous, in-vivo tumor lysate vaccine and treat metastatic disease. However, cryoablation alone may produce an insufficient immune response, depending on various factors, such as high freeze rate. Combining cryotherapy with immunotherapy enhances the immunostimulating response and has synergistic effects for cancer treatment. Although, cryoblation and immunotherapy has been used successfully in oncological clinical practice for over 100 years, and can treat metastatic disease with curative intent, it has been ignored in modern practice. Only recently has cryoimmunotherapy been resurrected to become the gold standard in cancer treatment of all stages of disease.
0
Cryobiology
During the degradation of α-hydroxy-substituted carbonic acid amides, the carbon chain shortens about one carbon-atom, too. The reaction is very slow at room temperature, therefore the reaction mixture is heated up to 60–65 °C.
2
Carbohydrates
Osazone are a class of carbohydrate derivatives found in organic chemistry formed when reducing sugars are reacted with excess of phenylhydrazine at boiling temperatures.
2
Carbohydrates
Availability of IVF in England is determined by Clinical Commissioning Groups (CCGs). The National Institute for Health and Care Excellence (NICE) recommends up to 3 cycles of treatment for people under 40 years old with minimal success conceiving after 2 years of unprotected sex. Cycles will not be continued for people who are older than 40 years. CCGs in Essex, Bedfordshire and Somerset have reduced funding to one cycle, or none, and it is expected that reductions will become more widespread. Funding may be available in "exceptional circumstances" – for example if a male partner has a transmittable infection or one partner is affected by cancer treatment. According to the campaign group Fertility Fairness "at the end of 2014 every CCG in England was funding at least one cycle of IVF". Prices paid by the NHS in England varied between under £3,000 to more than £6,000 in 2014/5. In February 2013, the cost of implementing the NICE guidelines for IVF along with other treatments for infertility was projected to be £236,000 per year per 100,000 members of the population. IVF increasingly appears on NHS treatments blacklists. In August 2017 five of the 208 CCGs had stopped funding IVF completely and others were considering doing so. By October 2017 only 25 CCGs were delivering the three recommended NHS IVF cycles to eligible people under 40. Policies could fall foul of discrimination laws if they treat same sex couples differently from heterosexual ones. In July 2019 Jackie Doyle-Price said that women were registering with surgeries further away from their own home in order to get around CCG rationing policies. The Human Fertilisation and Embryology Authority said in September 2018 that parents who are limited to one cycle of IVF, or have to fund it themselves, are more likely choose to implant multiple embryos in the hope it increases the chances of pregnancy. This significantly increases the chance of multiple births and the associated poor outcomes, which would increase NHS costs. The president of the Royal College of Obstetricians and Gynaecologists said that funding 3 cycles was "the most important factor in maintaining low rates of multiple pregnancies and reduce(s) associated complications".
0
Cryobiology
Several important measures are used to characterize solar cells. The most obvious is the total amount of electrical power produced for a given amount of solar power shining on the cell. Expressed as a percentage, this is known as the solar conversion efficiency. Electrical power is the product of current and voltage, so the maximum values for these measurements are important as well, J and V respectively. Finally, in order to understand the underlying physics, the "quantum efficiency" is used to compare the chance that one photon (of a particular energy) will create one electron. In quantum efficiency terms, DSSCs are extremely efficient. Due to their "depth" in the nanostructure there is a very high chance that a photon will be absorbed, and the dyes are very effective at converting them to electrons. Most of the small losses that do exist in DSSC's are due to conduction losses in the TiO and the clear electrode, or optical losses in the front electrode. The overall quantum efficiency for green light is about 90%, with the "lost" 10% being largely accounted for by the optical losses in the top electrode. The quantum efficiency of traditional designs vary, depending on their thickness, but are about the same as the DSSC. In theory, the maximum voltage generated by such a cell is simply the difference between the (quasi-)Fermi level of the TiO and the redox potential of the electrolyte, about 0.7 V under solar illumination conditions (V). That is, if an illuminated DSSC is connected to a voltmeter in an "open circuit", it would read about 0.7 V. In terms of voltage, DSSCs offer slightly higher V than silicon, about 0.7 V compared to 0.6 V. This is a fairly small difference, so real-world differences are dominated by current production, J. Although the dye is highly efficient at converting absorbed photons into free electrons in the TiO, only photons absorbed by the dye ultimately produce current. The rate of photon absorption depends upon the absorption spectrum of the sensitized TiO layer and upon the solar flux spectrum. The overlap between these two spectra determines the maximum possible photocurrent. Typically used dye molecules generally have poorer absorption in the red part of the spectrum compared to silicon, which means that fewer of the photons in sunlight are usable for current generation. These factors limit the current generated by a DSSC, for comparison, a traditional silicon-based solar cell offers about 35 mA/cm, whereas current DSSCs offer about 20 mA/cm. Overall peak power conversion efficiency for current DSSCs is about 11%. Current record for prototypes lies at 15%.
4
Ultraviolet Radiation
Let us imagine that the magnetization of a single superparamagnetic nanoparticle is measured and let us define as the measurement time. If , the nanoparticle magnetization will flip several times during the measurement, then the measured magnetization will average to zero. If , the magnetization will not flip during the measurement, so the measured magnetization will be what the instantaneous magnetization was at the beginning of the measurement. In the former case, the nanoparticle will appear to be in the superparamagnetic state whereas in the latter case it will appear to be “blocked” in its initial state. The state of the nanoparticle (superparamagnetic or blocked) depends on the measurement time. A transition between superparamagnetism and blocked state occurs when . In several experiments, the measurement time is kept constant but the temperature is varied, so the transition between superparamagnetism and blocked state is seen as a function of the temperature. The temperature for which is called the blocking temperature: For typical laboratory measurements, the value of the logarithm in the previous equation is in the order of 20–25. Equivalently, blocking temperature is the temperature below which a material shows slow relaxation of magnetization.
3
Magnetic Ordering
The photo-oxidation of polymers can be investigated by either natural or accelerated weather testing. Such testing is important in determining the expected service-life of plastic items as well as the fate of waste plastic. In natural weather testing, polymer samples are directly exposed to open weather for a continuous period of time, while accelerated weather testing uses a specialized test chamber which simulates weathering by sending a controlled amount of UV light and water at a sample. A test chamber may be advantageous in that the exact weathering conditions can be controlled, and the UV or moisture conditions can be made more intense than in natural weathering. Thus, degradation is accelerated and the test is less time-consuming. Through weather testing, the impact of photooxidative processes on the mechanical properties and lifetimes of polymer samples can be determined. For example, the tensile behavior can be elucidated through measuring the stress–strain curve for a specimen. This stress–strain curve is created by applying a tensile stress (which is measured as the force per area applied to a sample face) and measuring the corresponding strain (the fractional change in length). Stress is usually applied until the material fractures, and from this stress–strain curve, mechanical properties such as the Young’s modulus can be determined. Overall, weathering weakens the sample, and as it becomes more brittle, it fractures more easily. This is observed as a decrease in the yield strain, fracture strain, and toughness, as well as an increase in the Young’s modulus and break stress (the stress at which the material fractures). Aside from measuring the impact of degradation on mechanical properties, the degradation rate of plastic samples can also be quantified by measuring the change in mass of a sample over time, as microplastic fragments can break off from the bulk material as degradation progresses and the material becomes more brittle through chain-scission. Thus, the percentage change in mass is often measured in experiments to quantify degradation. Mathematical models can also be created to predict the change in mass of a polymer sample over the weathering process. Because mass loss occurs at the surface of the polymer sample, the degradation rate is dependent on surface area. Thus, a model for the dependence of degradation on surface area can be made by assuming that the rate of change in mass resulting from degradation is directly proportional to the surface area SA of the specimen: Here, is the density and k is known as the specific surface degradation rate (SSDR), which changes depending on the polymer sample’s chemical composition and weathering environment. Furthermore, for a microplastic sample, SA is often approximated as the surface area of a cylinder or sphere. Such an equation can be solved to determine the mass of a polymer sample as a function of time.
4
Ultraviolet Radiation
Since development of the aluminium gallium nitride LED in the early 2000s, UV LED technology has seen sustained growth in the UV curing marketplace. Generating energy most efficiently in the 365-405 nm UVA wavelengths, continued technological advances, have allowed for improved electrical efficiency of UV LEDs as well as significant increases in output. UV LED lamps generate high energy directed to a specific area which strengthen the uniformity. Benefiting from lower-temperature operation and the lack of hazardous mercury, UV LEDs have replaced medium-pressure lamps in many applications. Major limitations include difficulties in designing optics for curing on complex three-dimensional objects, and poor efficiency at generating lower-wavelength energy, though development work continues.
4
Ultraviolet Radiation
In naphtha cracking process, C4R2 refers to C4 residual obtained after separation of 1,3-butadiene and isobutylene from C4 raffinate stream and which mainly consists of cis- or trans-2-butene 50~60 wt%, 1-butene 10~15 wt%, and n-butane ~20 wt%. Normally C4R2 is a side product in tert-butyl alcohol plant if C4R1 is used for feed.
1
Separation Processes
ABS is an excellent method to employ for the extraction of proteins/enzymes and other labile biomolecules from crude cell extracts or other mixtures. Most often, this technique is employed in enzyme technology during industrial or laboratory production of enzymes. * They provide mild conditions that do not harm or denature unstable/labile biomolecules * The interfacial stress (at the interface between the two layers) is far lower (400-fold less) than water-organic solvent systems used for solvent extraction, causing less damage to the molecule to be extracted * The polymer layer stabilizes the extracted protein molecules, favouring a higher concentration of the desired protein in one of the layers, resulting in an effective extraction * Specialised systems may be developed (by varying factors such as temperature, degree of polymerisation, presence of certain ions etc. ) to favour the enrichment of a specific compound, or class of compounds, into one of the two phases. They are sometimes used simultaneously with ion-exchange resins for better extraction * Separation of the phases and the partitioning of the compounds occurs rapidly. This allows the extraction of the desired molecule before endogenous proteases can degrade them. * These systems are amenable to scale-ups, from laboratory-sized set-ups to those that can handle the requirements of industrial production. They may be employed in continuous protein-extraction processes. Specificity may be further increased by tagging ligands specific to the desired enzyme, onto the polymer. This results in a preferential binding of the enzyme to the polymer, increasing the effectiveness of the extraction. One major disadvantage, however, is the cost of materials involved, namely high-purity dextrans employed for the purpose. However, other low-cost alternatives such as less refined dextrans, hydroxypropyl starch derivatives and high-salt solutions are also available.
1
Separation Processes
In this model the magnetization where is the volume. The propagation of spin waves is described by the Landau-Lifshitz equation of motion: where is the gyromagnetic ratio and is the damping constant. The cross-products in this forbidding-looking equation show that the propagation of spin waves is governed by the torques generated by internal and external fields. (An equivalent form is the Landau-Lifshitz-Gilbert equation, which replaces the final term by a more "simple looking" equivalent one.) The first term on the right hand side of the equation describes the precession of the magnetization under the influence of the applied field, while the above-mentioned final term describes how the magnetization vector "spirals in" towards the field direction as time progresses. In metals the damping forces described by the constant are in many cases dominated by the eddy currents. One important difference between phonons and magnons lies in their dispersion relations. The dispersion relation for phonons is to first order linear in wavevector , namely , where is frequency, and is the velocity of sound. Magnons have a parabolic dispersion relation: where the parameter represents a "spin stiffness." The form is the third term of a Taylor expansion of a cosine term in the energy expression originating from the dot product. The underlying reason for the difference in dispersion relation is that the order parameter (magnetization) for the ground-state in ferromagnets violates time-reversal symmetry. Two adjacent spins in a solid with lattice constant that participate in a mode with wavevector have an angle between them equal to .
3
Magnetic Ordering
The inverse magnetostrictive effect, magnetoelastic effect or Villari effect, after its discoverer Emilio Villari, is the change of the magnetic susceptibility of a material when subjected to a mechanical stress.
3
Magnetic Ordering
Hypothermia is often defined as any body temperature below . With this method it is divided into degrees of severity based on the core temperature. Another classification system, the Swiss staging system, divides hypothermia based on the presenting symptoms which is preferred when it is not possible to determine an accurate core temperature. Other cold-related injuries that can be present either alone or in combination with hypothermia include: *Chilblains: condition caused by repeated exposure of skin to temperatures just above freezing. The cold causes damage to small blood vessels in the skin. This damage is permanent and the redness and itching will return with additional exposure. The redness and itching typically occurs on cheeks, ears, fingers, and toes. *Frostbite: the freezing and destruction of tissue, which happens below the freezing point of water *Frostnip: a superficial cooling of tissues without cellular destruction *Trench foot or immersion foot: a condition caused by repetitive exposure to water at non-freezing temperatures The normal human body temperature is often stated as . Hyperthermia and fever, are defined as a temperature of greater than .
0
Cryobiology
A sperm bank will aim to provide donor sperm which is safe by checking and screening donors and of their semen. A sperm donor must generally meet specific requirements regarding age and medical history. Requirements for sperm donors are strictly enforced, as in a study of 24,040 potential sperm donors, only 5620, or 23.38% were eligible to donate their sperm. Sperm banks typically screen potential donors for a range of diseases and disorders, including genetic diseases, chromosomal abnormalities and sexually transmitted infections that may be transmitted through sperm. The screening procedure generally also includes a quarantine period, in which the samples are frozen and stored for at least six months after which the donor will be re-tested for the STIs. This is to ensure no new infections have been acquired or have developed during the period of donation. Providing the result is negative, the sperm samples can be released from quarantine and used in treatments. Common reasons for sperm rejection include suboptimal semen quality and STDs. Chromosomal abnormalities are also a cause for semen rejection, but are less common. Children conceived through sperm donation have a birth defect rate of almost a fifth compared with the general population. A sperm bank takes a number of steps to ensure the health and quality of the sperm which it supplies and it will inform customers of the checks which it undertakes, providing relevant information about individual donors. A sperm bank will usually guarantee the quality and number of motile sperm available in a sample after thawing. They will try to select men as donors who are particularly fertile and whose sperm will survive the freezing and thawing process. Samples are often sold as containing a particular number of motile sperm per milliliter, and different types of samples may be sold by a sperm bank for differing types of use, e.g. ICI or IUI. The sperm will be checked to ensure its fecundity and also to ensure that motile sperm will survive the freezing process. If a man is accepted onto the sperm banks program as a sperm donor, his sperm will be constantly monitored, the donor will be regularly checked for infectious diseases, and samples of his blood will be taken at regular intervals. A sperm bank may provide a donor with dietary supplements containing herbal or mineral substances such as maca, zinc, vitamin E and arginine which are designed to improve the quality and quantity of the donors semen, as well as reducing the refractory time (i.e. the time between viable ejaculations). All sperm is frozen in straws or vials and stored for as long as the sperm donor may and can maintain it. Donors are subject to tests for infectious diseases such as human immunoviruses HIV (HIV-1 and HIV-2), human T-cell lymphotropic viruses (HTLV-1 and HTLV-2), syphilis, chlamydia, gonorrhea, hepatitis B virus, hepatitis C virus, cytomegalovirus (CMV), Trypanosoma cruzi and malaria as well as hereditary diseases such as cystic fibrosis, Sickle cell anemia, Familial Mediterranean fever, Gauchers disease, thalassaemia, Tay–Sachs disease, Canavans disease, familial dysautonomia, congenital adrenal hyperplasia, carnitine transporter deficiency and Karyotyping 46XY. Karyotyping is not a requirement in either EU or the US but some sperm banks choose to test donors as an extra service to the customer. A sperm donor may also be required to produce their medical records and those of their family, often for several generations. A sperm sample is usually tested micro-biologically at the sperm bank before it is prepared for freezing and subsequent use. A sperm donor's blood group may also be registered to ensure compatibility with the recipient. Some sperm banks may disallow sexually active gay men from donating sperm due to the population's increased risk of HIV and hepatitis B. Modern sperm banks have also been known to screen out potential donors based on genetic conditions and family medical history.
0
Cryobiology
Parkinsons disease is associated with aggregation of α-synuclein. As O-GlcNAc modification of α-synuclein has been found to inhibit its aggregation, elevating α-synuclein O-GlcNAc is being explored as a therapeutic strategy to treat Parkinsons disease.
2
Carbohydrates
Magnonics is an emerging field of modern magnetism, which can be considered a sub-field of modern solid state physics. Magnonics combines the study of waves and magnetism. Its main aim is to investigate the behaviour of spin waves in nano-structure elements. In essence, spin waves are a propagating re-ordering of the magnetisation in a material and arise from the precession of magnetic moments. Magnetic moments arise from the orbital and spin moments of the electron, most often it is this spin moment that contributes to the net magnetic moment. Following the success of the modern hard disk, there is much current interest in future magnetic data storage and using spin waves for things such as magnonic logic and data storage. Similarly, spintronics looks to utilize the inherent spin degree of freedom to complement the already successful charge property of the electron used in contemporary electronics. Modern magnetism is concerned with furthering the understanding of the behaviour of the magnetisation on very small (sub-micrometre) length scales and very fast (sub-nanosecond) timescales and how this can be applied to improving existing or generating new technologies and computing concepts. A magnon torque device was invented and later perfected at the National University of Singapore's Electrical & Computer Engineering department, which is based on such potential uses, with results published on November 29, 2019, in Science. A magnonic crystal is a magnetic metamaterial with alternating magnetic properties. Like conventional metamaterials, their properties arise from geometrical structuring, rather than their bandstructure or composition directly. Small spatial inhomogeneities create an effective macroscopic behaviour, leading to properties not readily found in nature. By alternating parameters such as the relative permeability or saturation magnetisation, there exists the possibility to tailor magnonic bandgaps in the material. By tuning the size of this bandgap, only spin wave modes able to cross the bandgap would be able to propagate through the media, leading to selective propagation of certain spin wave frequencies. See Surface magnon polariton.
3
Magnetic Ordering
UV light is electromagnetic radiation with wavelengths shorter than visible light but longer than X-rays. UV is categorised into several wavelength ranges, with short-wavelength UV (UV-C) considered "germicidal UV". Wavelengths between about 200 nm and 300 nm are strongly absorbed by nucleic acids. The absorbed energy can result in defects including pyrimidine dimers. These dimers can prevent replication or can prevent the expression of necessary proteins, resulting in the death or inactivation of the organism. Recently, it has been shown that these dimers are fluorescent. * Mercury-based lamps operating at low vapor pressure emit UV light at the 253.7 nm line. * Ultraviolet light-emitting diode (UV-C LED) lamps emit UV light at selectable wavelengths between 255 and 280 nm. * Pulsed-xenon lamps emit UV light across the entire UV spectrum with a peak emission near 230 nm. This process is similar to, but stronger than, the effect of longer wavelengths (UV-B) producing sunburn in humans. Microorganisms have less protection against UV and cannot survive prolonged exposure to it. A UVGI system is designed to expose environments such as water tanks, rooms and forced air systems to germicidal UV. Exposure comes from germicidal lamps that emit germicidal UV at the correct wavelength, thus irradiating the environment. The forced flow of air or water through this environment ensures exposure of that air or water.
4
Ultraviolet Radiation
Using a catalytic chemical reaction from titanium dioxide and UVC exposure, oxidation of organic matter converts pathogens, pollens, and mold spores into harmless inert byproducts. However, the reaction of titanium dioxide and UVC is not a straight path. Several hundreds of reactions occur prior to the inert byproducts stage and can hinder the resulting reaction creating formaldehyde, aldehyde, and other VOCs en route to a final stage. Thus, the use of titanium dioxide and UVC requires very specific parameters for a successful outcome. The cleansing mechanism of UV is a photochemical process. Contaminants in the indoor environment are almost entirely organic carbon-based compounds, which break down when exposed to high-intensity UV at 240 to 280 nm. Short-wave ultraviolet radiation can destroy DNA in living microorganisms. UVCs effectiveness is directly related to intensity and exposure time. UV has also been shown to reduce gaseous contaminants such as carbon monoxide and VOCs. UV lamps radiating at 184 and 254 nm can remove low concentrations of hydrocarbons and carbon monoxide if the air is recycled between the room and the lamp chamber. This arrangement prevents the introduction of ozone into the treated air. Likewise, air may be treated by passing by a single UV source operating at 184 nm and passed over iron pentaoxide to remove the ozone produced by the UV lamp.
4
Ultraviolet Radiation
The eye is most sensitive to damage by UV in the lower UV‑C band at 265–275 nm. Radiation of this wavelength is almost absent from sunlight at the surface of the Earth but is emitted by artificial sources such as the electrical arcs employed in arc welding. Unprotected exposure to these sources can cause "welder's flash" or "arc eye" (photokeratitis) and can lead to cataracts, pterygium and pinguecula formation. To a lesser extent, UV‑B in sunlight from 310 to 280 nm also causes photokeratitis ("snow blindness"), and the cornea, the lens, and the retina can be damaged. Protective eyewear is beneficial to those exposed to ultraviolet radiation. Since light can reach the eyes from the sides, full-coverage eye protection is usually warranted if there is an increased risk of exposure, as in high-altitude mountaineering. Mountaineers are exposed to higher-than-ordinary levels of UV radiation, both because there is less atmospheric filtering and because of reflection from snow and ice. Ordinary, untreated eyeglasses give some protection. Most plastic lenses give more protection than glass lenses, because, as noted above, glass is transparent to UV‑A and the common acrylic plastic used for lenses is less so. Some plastic lens materials, such as polycarbonate, inherently block most UV.
4
Ultraviolet Radiation
For people who are alert and able to swallow, drinking warm (not hot) sweetened liquids can help raise the temperature. General medical consensus advises against alcohol and caffeinated drinks. As most hypothermic people are moderately dehydrated due to cold-induced diuresis, warmed intravenous fluids to a temperature of are often recommended.
0
Cryobiology
Carbohydrate Structure Database (CSDB) is a free curated database and service platform in glycoinformatics, launched in 2005 by a group of Russian scientists from [http://zioc.ru/?lang=en N.D. Zelinsky Institute of Organic Chemistry], Russian Academy of Sciences. CSDB stores published structural, taxonomical, bibliographic and NMR-spectroscopic data on natural carbohydrates and carbohydrate-related molecules.
2
Carbohydrates
Unlike magnetic spin ordering where the antiferromagnetism can be defined by flipping the magnetization axis of two neighbor sites from a ferromagnetic configuration, flipping of the magnetization axis of a multipole is usually meaningless. Taking a moment as an example, if one flips the z-axis by making a rotation toward the y-axis, it just changes nothing. Therefore, a suggested definition of antiferromagnetic multipolar ordering is to flip their phases by , i.e. . In this regard, the antiferromagnetic spin ordering is just a special case of this definition, i.e. flipping the phase of a dipole moment is equivalent to flipping its magnetization axis. As for high rank multipoles, e.g. , it actually becomes a rotation and for it is even not any kind of rotation.
3
Magnetic Ordering
Amylopectin is a water-insoluble polysaccharide and highly branched polymer of α-glucose units found in plants. It is one of the two components of starch, the other being amylose. Plants store starch within specialized organelles called amyloplasts. To generate energy, the plant hydrolyzes the starch, releasing the glucose subunits. Humans and other animals that eat plant foods also use amylase, an enzyme that assists in breaking down amylopectin, to initiate the hydrolysis of starch. Starch is made of about 70–80% amylopectin by weight, though it varies depending on the source. For example, it ranges from lower percent content in long-grain rice, amylomaize, and russet potatoes to 100% in glutinous rice, waxy potato starch, and waxy corn. Amylopectin is highly branched, being formed of 2,000 to 200,000 glucose units. Its inner chains are formed of 20–24 glucose subunits. Dissolved amylopectin starch has a lower tendency of retrogradation (a partial recrystallization after cooking—a part of the staling process) during storage and cooling. For this main reason, the waxy starches are used in different applications mainly as a thickening agent or stabilizer.
2
Carbohydrates
Excimer lamps are quasimonochromatic light sources operating over a wide range of wavelengths in the ultraviolet (UV) and vacuum ultraviolet (VUV) spectral regions. Operation of an excimer lamp is based on the formation of excited dimers (excimers), which spontaneously transiting from the excited state to the ground state result in the emission of UV photons. The spectral maximum of excimer lamp radiation is specified by a working excimer molecule: Excimers are diatomic molecules (dimers) or polyatomic molecules that have stable excited electronic states and an unbound or weakly bound (thermally unstable) ground state. Initially, only homonuclear diatomic molecules with a stable excited state but a repulsive ground state were called excimers (excited dimers). The term "excimer" was later extended to refer any polyatomic molecule with a repulsive or weakly bound ground state. One can also come across the term "exciplex" (from "excited complex"). It is also an excimer molecule but not a homonuclear dimer. For instance, Xe*, Kr*, Ar* are excimer molecules, while XeCl*, KrCl*, XeBr*, ArCl*, XeCl* are referred to exciplex molecules. Dimers of rare gases and rare-gas–halogen dimers are the most spread and studied excimers. Rare-gas–halide trimers, metal excimers, metal–rare-gas excimers, metal–halide excimers, and rare-gas–oxide excimers are also known, but they are rarely used. An excimer molecule can exist in an excited electronic state for a limited time, as a rule from a few to a few tens of nanoseconds. After that, an excimer molecule transits to the ground electronic state, while releasing the energy of internal electronic excitation in the form of a photon. Owing to a specific electronic structure of an excimer molecule, the energy gap between the lowest bound excited electronic state and the ground state amounts from 3.5 to 10 eV, depending on a kind of an excimer molecule and provides light emission in the UV and VUV spectral region. A typical spectral characteristic of excimer lamp radiation consists mainly of one intense narrow emission band. About 70–80% of the whole radiation power of an excimer lamp is concentrated in this emission band. The full width at half maximum of the emission band depends on a kind of an excimer molecule and excitation conditions and ranges within 2 to 15 nm. In fact, excimer lamps are sources of quasimonochromatic light. Therefore, such sources are suitable for spectral-selective irradiation and can even replace lasers in some cases.
4
Ultraviolet Radiation
The dyes used in early experimental cells (circa 1995) were sensitive only in the high-frequency end of the solar spectrum, in the UV and blue. Newer versions were quickly introduced (circa 1999) that had much wider frequency response, notably "triscarboxy-ruthenium terpyridine" [Ru(4,4',4"-(COOH)-terpy)(NCS)], which is efficient right into the low-frequency range of red and IR light. The wide spectral response results in the dye having a deep brown-black color, and is referred to simply as "black dye". The dyes have an excellent chance of converting a photon into an electron, originally around 80% but improving to almost perfect conversion in more recent dyes, the overall efficiency is about 90%, with the "lost" 10% being largely accounted for by the optical losses in top electrode. A solar cell must be capable of producing electricity for at least twenty years, without a significant decrease in efficiency (life span). The "black dye" system was subjected to 50 million cycles, the equivalent of ten years' exposure to the sun in Switzerland. No discernible performance decrease was observed. However the dye is subject to breakdown in high-light situations. Over the last decade an extensive research program has been carried out to address these concerns. The newer dyes included 1-ethyl-3 methylimidazolium tetrocyanoborate [EMIB(CN)] which is extremely light- and temperature-stable, copper-diselenium [Cu(In,GA)Se] which offers higher conversion efficiencies, and others with varying special-purpose properties. DSSCs are still at the start of their development cycle. Efficiency gains are possible and have recently started more widespread study. These include the use of quantum dots for conversion of higher-energy (higher frequency) light into multiple electrons, using solid-state electrolytes for better temperature response, and changing the doping of the TiO to better match it with the electrolyte being used.
4
Ultraviolet Radiation
The electromagnetic spectrum of ultraviolet radiation (UVR), defined most broadly as 10–400 nanometers, can be subdivided into a number of ranges recommended by the ISO standard ISO 21348: Several solid-state and vacuum devices have been explored for use in different parts of the UV spectrum. Many approaches seek to adapt visible light-sensing devices, but these can suffer from unwanted response to visible light and various instabilities. Ultraviolet can be detected by suitable photodiodes and photocathodes, which can be tailored to be sensitive to different parts of the UV spectrum. Sensitive UV photomultipliers are available. Spectrometers and radiometers are made for measurement of UV radiation. Silicon detectors are used across the spectrum. Vacuum UV, or VUV, wavelengths (shorter than 200 nm) are strongly absorbed by molecular oxygen in the air, though the longer wavelengths around 150–200 nm can propagate through nitrogen. Scientific instruments can, therefore, use this spectral range by operating in an oxygen-free atmosphere (commonly pure nitrogen), without the need for costly vacuum chambers. Significant examples include 193-nm photolithography equipment (for semiconductor manufacturing) and circular dichroism spectrometers. Technology for VUV instrumentation was largely driven by solar astronomy for many decades. While optics can be used to remove unwanted visible light that contaminates the VUV, in general; detectors can be limited by their response to non-VUV radiation, and the development of solar-blind devices has been an important area of research. Wide-gap solid-state devices or vacuum devices with high-cutoff photocathodes can be attractive compared to silicon diodes. Extreme UV (EUV or sometimes XUV) is characterized by a transition in the physics of interaction with matter. Wavelengths longer than about 30 nm interact mainly with the outer valence electrons of atoms, while wavelengths shorter than that interact mainly with inner-shell electrons and nuclei. The long end of the EUV spectrum is set by a prominent He spectral line at 30.4 nm. EUV is strongly absorbed by most known materials, but synthesizing multilayer optics that reflect up to about 50% of EUV radiation at normal incidence is possible. This technology was pioneered by the NIXT and MSSTA sounding rockets in the 1990s, and it has been used to make telescopes for solar imaging. See also the Extreme Ultraviolet Explorer satellite. Some sources use the distinction of "hard UV" and "soft UV". For instance, in the case of astrophysics, the boundary may be at the Lyman limit (wavelength 91.2 nm), with "hard UV" being more energetic; the same terms may also be used in other fields, such as cosmetology, optoelectronic, etc. The numerical values of the boundary between hard/soft, even within similar scientific fields, do not necessarily coincide; for example, one applied-physics publication used a boundary of 190 nm between hard and soft UV regions.
4
Ultraviolet Radiation
Trehalose (from Turkish tıgala – a sugar derived from insect cocoons + -ose) is a sugar consisting of two molecules of glucose. It is also known as mycose or tremalose. Some bacteria, fungi, plants and invertebrate animals synthesize it as a source of energy, and to survive freezing and lack of water. Extracting trehalose was once a difficult and costly process, but around 2000, the Hayashibara company (Okayama, Japan) discovered an inexpensive extraction technology from starch. Trehalose has high water retention capabilities, and is used in food, cosmetics and as a drug. A procedure developed in 2017 using trehalose allows sperm storage at room temperatures.
2
Carbohydrates
Carbohydrate chemistry is a large and economically important branch of organic chemistry. Some of the main organic reactions that involve carbohydrates are: * Amadori rearrangement * Carbohydrate acetalisation * Carbohydrate digestion * Cyanohydrin reaction * Koenigs–Knorr reaction * Lobry de Bruyn–Van Ekenstein transformation * Nef reaction * Wohl degradation
2
Carbohydrates
There is no time-dependence of the magnetization when the nanoparticles are either completely blocked () or completely superparamagnetic (). There is, however, a narrow window around where the measurement time and the relaxation time have comparable magnitude. In this case, a frequency-dependence of the susceptibility can be observed. For a randomly oriented sample, the complex susceptibility is: where * is the frequency of the applied field * is the susceptibility in the superparamagnetic state * is the susceptibility in the blocked state * is the relaxation time of the assembly From this frequency-dependent susceptibility, the time-dependence of the magnetization for low-fields can be derived:
3
Magnetic Ordering
The oldest form of mineral processing practiced since the Stone Age is hand-picking. Georgius Agricola also describes hand-picking is his book De re metallica in 1556. Sensor-based sorting is the automation and extension to hand picking. In addition to sensors that measure visible differences like color (and the further interpretation of the data regarding texture and shape), other sensors are available on industrial scale sorters that are able to measure differences invisible for the human eye (EM, XRT, NIR). The principles of the technology and the first machinery has been developed since the 1920s (. Nevertheless, widely applied and standard technology it is only in the industrial minerals and gemstone segments. Mining is benefiting from the step change developments in sensing and computing technologies and from machine development in the recycling and food processing industries. In 2002, Cutmore and Eberhard stated that the relatively small installed base of sensor-based sorters in mining is more a result of insufficient industry interest than any technical barriers to their effective use Nowadays sensor-based sorting is beginning to reveal its potential in various applications in basically all segments of mineral production (industrial minerals, gemstones, base-metals, precious metals, ferrous metals, fuel). Precondition is physical liberation in coarse size ranges (~) to make physical separation possible. Either the product fraction, but more often the waste fraction needs to be liberated. If liberation is present, there is good potential that one of available detection technologies on today's sensor-based sorters can positively or negatively identify one of the two desired fractions.
1
Separation Processes
Minimise the lateral pressure of the strings by adjusting the alignment tine bar to avoid the string being cut off. Have ceramic tube place over each aligning tine bar to act as bearing surface for the strings.
1
Separation Processes
A blacklight, also called a UV-A light, Wood's lamp, or ultraviolet light, is a lamp that emits long-wave (UV-A) ultraviolet light and very little visible light. One type of lamp has a violet filter material, either on the bulb or in a separate glass filter in the lamp housing, which blocks most visible light and allows through UV, so the lamp has a dim violet glow when operating. Blacklight lamps which have this filter have a lighting industry designation that includes the letters "BLB". This stands for "blacklight blue". A second type of lamp produces ultraviolet but does not have the filter material, so it produces more visible light and has a blue color when operating. These tubes are made for use in "bug zapper" insect traps, and are identified by the industry designation "BL". This stands for "blacklight". Blacklight sources may be specially designed fluorescent lamps, mercury-vapor lamps, light-emitting diodes (LEDs), lasers, or incandescent lamps. In medicine, forensics, and some other scientific fields, such a light source is referred to as a Woods lamp, named after Robert Williams Wood, who invented the original Woods glass UV filters. Although many other types of lamp emit ultraviolet light with visible light, black lights are essential when UV-A light without visible light is needed, particularly in observing fluorescence, the colored glow that many substances emit when exposed to UV. Black lights are employed for decorative and artistic lighting effects, diagnostic and therapeutic uses in medicine, the detection of substances tagged with fluorescent dyes, rock-hunting, scorpion-hunting, the detection of counterfeit money, the curing of plastic resins, attracting insects and the detection of refrigerant leaks affecting refrigerators and air conditioning systems. Strong sources of long-wave ultraviolet light are used in tanning beds.
4
Ultraviolet Radiation
In ancient China, the method was improved by mechanization with the development of the rotary winnowing fan, which used a cranked fan to produce the airstream. This was featured in Wang Zhens book the Nong Shu' of 1313 AD.
1
Separation Processes
Pan-O-GlcNAc antibodies that recognize the O-GlcNAc modification largely irrespective of the modified proteins identity are commonly used. These include RL2, an IgG antibody raised against O-GlcNAcylated nuclear pore complex proteins, and CTD110.6, an IgM antibody raised against an immunogenic peptide with a single serine O-GlcNAc modification. Other O'-GlcNAc-specific antibodies have been reported and demonstrated to have some dependence on the identity of the modified protein.
2
Carbohydrates
Unlike the widely used automotive antifreeze, ethylene glycol, AFPs do not lower freezing point in proportion to concentration. Rather, they work in a noncolligative manner. This phenomenon allows them to act as an antifreeze at concentrations 1/300th to 1/500th of those of other dissolved solutes. Their low concentration minimizes their effect on osmotic pressure. The unusual properties of AFPs are attributed to their selective affinity for specific crystalline ice forms and the resulting blockade of the ice-nucleation process.
0
Cryobiology
The hexosamine biosynthetic pathways product, UDP-GlcNAc, is utilized by OGT to catalyze the addition of O-GlcNAc. This pathway integrates information about the concentrations of various metabolites including amino acids, carbohydrates, fatty acids, and nucleotides. Consequently, UDP-GlcNAc levels are sensitive to cellular metabolite levels. OGT activity is in part regulated by UDP-GlcNAc concentration, making a link between cellular nutrient status and O'-GlcNAc. Glucose deprivation causes a decline in UDP-GlcNAc levels and an initial decline in O-GlcNAc, but counterintuitively, O-GlcNAc is later significantly upregulated. This later increase has been shown to be dependent on AMPK and p38 MAPK activation, and this effect is partially due to increases in OGT mRNA and protein levels. It has also been suggested that this effect is dependent on calcium and CaMKII. Activated p38 is able to recruit OGT to specific protein targets, including neurofilament H; O-GlcNAc modification of neurofilament H enhances its solubility. During glucose deprivation, glycogen synthase is modified by O-GlcNAc which inhibits its activity.
2
Carbohydrates
The spin-orbit interaction is the primary source of magnetocrystalline anisotropy. It is basically the orbital motion of the electrons which couples with crystal electric field giving rise to the first order contribution to magnetocrystalline anisotropy. The second order arises due to the mutual interaction of the magnetic dipoles. This effect is weak compared to the exchange interaction and is difficult to compute from first principles, although some successful computations have been made.
3
Magnetic Ordering
One of the widely used ways to excite emission of excimer molecules is an electric discharge. There are a lot of discharge types used for pumping excimer lamps. Some examples are glow discharge, pulsed discharge, capacitive discharge, longitudinal and transverse discharges, volume discharge, spark discharge, and microhollow discharge. , dielectric barrier discharge (DBD), a type of capacitive discharge, is the most common type used in commercial lamps. A benefit of the DBD excimer lamps is that the electrodes are not in direct contact with the active medium (plasma). Absence of interaction between the electrodes and the discharge eliminates electrode corrosion as well as contamination of the active medium by sputtered electrode material, which considerably increases the lifetime of DBD excimer lamps in comparison with others. Moreover, a dielectric barrier discharge ensures effective excitation of a gas mixture in a wide range of working pressures from a few torrs to more than one atmosphere. Excimer lamps can be made in any desired shape of the radiating surface, satisfying requirements of a specific task.
4
Ultraviolet Radiation
Specialized UV gas-discharge lamps containing different gases produce UV radiation at particular spectral lines for scientific purposes. Argon and deuterium arc lamps are often used as stable sources, either windowless or with various windows such as magnesium fluoride. These are often the emitting sources in UV spectroscopy equipment for chemical analysis. Other UV sources with more continuous emission spectra include xenon arc lamps (commonly used as sunlight simulators), deuterium arc lamps, mercury-xenon arc lamps, and metal-halide arc lamps. The excimer lamp, a UV source developed in the early 2000s, is seeing increasing use in scientific fields. It has the advantages of high-intensity, high efficiency, and operation at a variety of wavelength bands into the vacuum ultraviolet.
4
Ultraviolet Radiation
Sedimentation has been used to treat wastewater for millennia. Primary treatment of sewage is removal of floating and settleable solids through sedimentation. Primary clarifiers reduce the content of suspended solids as well as the pollutant embedded in the suspended solids. Because of the large amount of reagent necessary to treat domestic wastewater, preliminary chemical coagulation and flocculation are generally not used, remaining suspended solids being reduced by following stages of the system. However, coagulation and flocculation can be used for building a compact treatment plant (also called a "package treatment plant"), or for further polishing of the treated water. Sedimentation tanks called "secondary clarifiers" remove flocs of biological growth created in some methods of secondary treatment including activated sludge, trickling filters and rotating biological contactors.
1
Separation Processes
O-GlcNAc has been found to slow protein aggregation, though the generality of this phenomenon is unknown. Solid-phase peptide synthesis was used to prepare full-length α-synuclein with an O-GlcNAc modification at T72. Thioflavin T aggregation assays and transmission electron microscopy demonstrated that this modified α-synuclein does not readily form aggregates. Treatment of JNPL3 tau transgenic mice with an OGA inhibitor was shown to increase microtubule-associated protein tau O-GlcNAcylation. Immunohistochemistry analysis of the brainstem revealed decreased formation of neurofibrillary tangles. Recombinant O-GlcNAcylated tau was shown to aggregate slower than unmodified tau in an in vitro thioflavin S aggregation assay. Similar results were obtained for a recombinantly prepared O-GlcNAcylated TAB1 construct versus its unmodified form.
2
Carbohydrates
The lattice is described by a graph with vertex set and edge set . The model has an associated Lie algebra . More generally, this Lie algebra can be taken to be any complex, finite-dimensional semi-simple Lie algebra . More generally still it can be taken to be an arbitrary Lie algebra. Each vertex has an associated representation of the Lie algebra , labelled . This is a quantum generalization of statistical lattice models, where each vertex has an associated spin variable. The Hilbert space for the whole system, which could be called the configuration space, is the tensor product of the representation spaces at each vertex: A Hamiltonian is then an operator on the Hilbert space. In the theory of spin chains, there are possibly many Hamiltonians which mutually commute. This allows the operators to be simultaneously diagonalized. There is a notion of exact solvability for spin chains, often stated as determining the spectrum of the model. In precise terms, this means determining the simultaneous eigenvectors of the Hilbert space for the Hamiltonians of the system as well as the eigenvalues of each eigenvector with respect to each Hamiltonian.
3
Magnetic Ordering
The banteng was the second endangered species to be successfully cloned, and the first clone to survive beyond infancy. Scientists at Advanced Cell Technology in Worcester, Massachusetts, extracted DNA from skin cells of a dead male banteng, that were preserved in San Diego 's Frozen Zoo facility, and transferred it into eggs from domestic banteng cows, a process called somatic cell nuclear transfer. Thirty embryos were created and implanted in domestic banteng cows. Two were carried to term and delivered by Caesarian section. The first was born on 1 April 2003, and the second two days later. The second was euthanized, apparently suffering from large offspring syndrome (an overgrowth disorder), but the first survived and lived for seven years at the San Diego Zoo, where it died in April 2010 after it broke a leg and was euthanized.
0
Cryobiology
Asperomagnetism is the equivalent of ferromagnetism for a disordered system with random magnetic moments. It is defined by short range correlations of locked magnetic moments within small noncrystalline regions, with average long range correlations. Speromagnets possess a permanent net magnetic moment. An example of a asperomagnets is amorphous YFe and DyNi.
3
Magnetic Ordering
As the temperature decreases, further physiological systems falter and heart rate, respiratory rate, and blood pressure all decrease. This results in an expected heart rate in the 30s at a temperature of . There is often cold, inflamed skin, hallucinations, lack of reflexes, fixed dilated pupils, low blood pressure, pulmonary edema, and shivering is often absent. Pulse and respiration rates decrease significantly, but fast heart rates (ventricular tachycardia, atrial fibrillation) can also occur. Atrial fibrillation is not typically a concern in and of itself.
0
Cryobiology
An extensive open-air planting used maintain genetic diversity of wild, agricultural, or forestry species. Typically species that are either difficult or impossible to conserve in seed banks are conserved in field gene banks. Field gene banks may also be used grow and select progeny of species stored by other ex situ techniques.
0
Cryobiology
Method suitable for effective testing of magnetoelastic effect in magnetic materials should fulfill the following requirements: * magnetic circuit of the tested sample should be closed. Open magnetic circuit causes demagnetization, which reduces magnetoelastic effect and complicates its analysis. * distribution of stresses should be uniform. Value and direction of stresses should be known. * there should be the possibility of making the magnetizing and sensing windings on the sample - necessary to measure magnetic hysteresis loop under mechanical stresses. Following testing methods were developed: * tensile stresses applied to the strip of magnetic material in the shape of a ribbon. Disadvantage: open magnetic circuit of the tested sample. * tensile or compressive stresses applied to the frame-shaped sample. Disadvantage: only bulk materials may be tested. No stresses in the joints of sample columns. * compressive stresses applied to the ring core in the sideways direction. Disadvantage: non-uniform stresses distribution in the core . * tensile or compressive stresses applied axially to the ring sample. Disadvantage: stresses are perpendicular to the magnetizing field.
3
Magnetic Ordering
NRF2, a transcription factor associated with the cellular response to oxidative stress, has been found to be indirectly regulated by O-GlcNAc. KEAP1, an adaptor protein for the cullin 3-dependent E3 ubiquitin ligase complex, mediates the degradation of NRF2; oxidative stress leads to conformational changes in KEAP1 that repress degradation of NRF2. O-GlcNAc modification of KEAP1 at S104 is required for efficient ubiquitination and subsequent degradation of NRF2, linking O-GlcNAc to oxidative stress. Glucose deprivation leads to a reduction in O-GlcNAc and reduces NRF2 degradation. Cells expressing a KEAP1 S104A mutant are resistant to erastin-induced ferroptosis, consistent with higher NRF2 levels upon removal of S104 O-GlcNAc. Elevated O-GlcNAc levels have been associated with diminished synthesis of hepatic glutathione, an important cellular antioxidant. Acetaminophen overdose leads to accumulation of the strongly oxidizing metabolite NAPQI in the liver, which is detoxified by glutathione. In mice, OGT knockout has a protective effect against acetaminophen-induced liver injury, while OGA inhibition with thiamet-G exacerbates acetaminophen-induced liver injury.
2
Carbohydrates
It is a suitable discharge option for cakes that are thin and have the tendency to stick with one another. Filter cakes on the drum and discharged roll are pressed against one another to ensure that the thin filter cake is peeled or pulled from the drum. Removal of solids from the discharge roll is done via a knife blade. Roll discharged is used if the desired separation requires high filtration rate, if high solid content slurry is used or if the slurry is easy to filter to produce cake formation or if the discharged solid is sticky or mud-like cake.
1
Separation Processes
Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of the moment often form a loop or hysteresis curve, where there are different values of one variable depending on the direction of change of another variable. This history dependence is the basis of memory in a hard disk drive and the remanence that retains a record of the Earth's magnetic field magnitude in the past. Hysteresis occurs in ferromagnetic and ferroelectric materials, as well as in the deformation of rubber bands and shape-memory alloys and many other natural phenomena. In natural systems, it is often associated with irreversible thermodynamic change such as phase transitions and with internal friction; and dissipation is a common side effect. Hysteresis can be found in physics, chemistry, engineering, biology, and economics. It is incorporated in many artificial systems: for example, in thermostats and Schmitt triggers, it prevents unwanted frequent switching. Hysteresis can be a dynamic lag between an input and an output that disappears if the input is varied more slowly; this is known as rate-dependent hysteresis. However, phenomena such as the magnetic hysteresis loops are mainly rate-independent, which makes a durable memory possible. Systems with hysteresis are nonlinear, and can be mathematically challenging to model. Some hysteretic models, such as the Preisach model (originally applied to ferromagnetism) and the Bouc–Wen model, attempt to capture general features of hysteresis; and there are also phenomenological models for particular phenomena such as the Jiles–Atherton model for ferromagnetism. It is difficult to define hysteresis precisely. Isaak D. Mayergoyz wrote "...the very meaning of hysteresis varies from one area to another, from paper to paper and from author to author. As a result, a stringent mathematical definition of hysteresis is needed in order to avoid confusion and ambiguity.".
3
Magnetic Ordering
Amylopectin-based fibers have been fabricated mainly by blending native or modified starches with polymers, plasticizers, cross-linkers, or other additives. Most amylopectin-based fibers are fabricated by electro-wet-spinning, however, the method is demonstrated to be suitable for starches with amylopectin content below 65% and sensitive to amylopectin content of starches. Electrospinning allows for amylopectin to coagulate and form a filament. Fibrous starches induce a more dense material, which can optimize the mechanical properties of starch. Fibers in biomaterials can be used for bone tissue engineering as suitable environment for bone tissue repair and regeneration. Natural bone is a complex composite material composed of an extracellular matrix of mineralized fibers containing living cells and bioactive molecules. Consequently, the use of fibers in biomaterial-based scaffolds offers a wide variety of opportunities to replicate the functional performance of bone. In the last decade, fiber-based techniques such as weaving, knitting, braiding, as well as electrospinning, and direct writing have emerged as promising platforms for making 3D tissue constructs.
2
Carbohydrates
The Downdraft skimmer is both a proprietary skimmer design and a style of protein skimmer that injects water under high pressure into tubes that have a foam or bubble generating mechanism and carry the air/water mixture down into the skimmer and into a separate chamber. The proprietary design is protected in the United States with patents and commercial skimmer products in the US are limited to that single company. Their design uses one or more tubes with plastic media such as bio balls inside to mix water under high pressure and air in the body of the skimmer resulting in foam that collects protein waste in a collection cup. This was one of the earlier high performance protein skimmer designs and large models were produced that saw success in large and public aquariums.
1
Separation Processes
Electrical hysteresis typically occurs in ferroelectric material, where domains of polarization contribute to the total polarization. Polarization is the electrical dipole moment (either C·m or C·m). The mechanism, an organization of the polarization into domains, is similar to that of magnetic hysteresis.
3
Magnetic Ordering
</div> </div> Monosaccharides are classified according to three different characteristics: the placement of its carbonyl group, the number of carbon atoms it contains, and its chiral handedness. If the carbonyl group is an aldehyde, the monosaccharide is an aldose; if the carbonyl group is a ketone, the monosaccharide is a ketose. Monosaccharides with three carbon atoms are called trioses, those with four are called tetroses, five are called pentoses, six are hexoses, and so on. These two systems of classification are often combined. For example, glucose is an aldohexose (a six-carbon aldehyde), ribose is an aldopentose (a five-carbon aldehyde), and fructose is a ketohexose (a six-carbon ketone). Each carbon atom bearing a hydroxyl group (-OH), with the exception of the first and last carbons, are asymmetric, making them stereo centers with two possible configurations each (R or S). Because of this asymmetry, a number of isomers may exist for any given monosaccharide formula. Using Le Bel-van't Hoff rule, the aldohexose D-glucose, for example, has the formula (C·HO), of which four of its six carbons atoms are stereogenic, making D-glucose one of 2=16 possible stereoisomers. In the case of glyceraldehydes, an aldotriose, there is one pair of possible stereoisomers, which are enantiomers and epimers. 1, 3-dihydroxyacetone, the ketose corresponding to the aldose glyceraldehydes, is a symmetric molecule with no stereo centers. The assignment of D or L is made according to the orientation of the asymmetric carbon furthest from the carbonyl group: in a standard Fischer projection if the hydroxyl group is on the right the molecule is a D sugar, otherwise it is an L sugar. The "D-" and "L-" prefixes should not be confused with "d-" or "l-", which indicate the direction that the sugar rotates plane polarized light. This usage of "d-" and "l-" is no longer followed in carbohydrate chemistry.
2
Carbohydrates
The filter cloth is washed on both sides with each drum rotation while discharging filter cakes. The products for this mechanism are usually sticky, wet and thin thus, requiring the aid of a discharge roll. Belt discharge is used if slurry with moderate solid concentration is used or if the slurry is easy to filter to produce cake formation or if a longer wear resistance is desired for the separation of the mentioned slurry.....
1
Separation Processes
The absence of fructose-1-phosphate aldolase (aldolase B) results in the accumulation of fructose 1 phosphate in hepatocytes, kidney and small intestines. An accumulation of fructose-1-phosphate following fructose ingestion inhibits glycogenolysis (breakdown of glycogen) and gluconeogenesis, resulting in severe hypoglycemia. It is symptomatic resulting in severe hypoglycemia, abdominal pain, vomiting, hemorrhage, jaundice, hepatomegaly, and hyperuricemia eventually leading to liver and/or kidney failure and death. The incidence varies throughout the world, but it is estimated at 1:55,000 (range 1:10,000 to 1:100,000) live births.
2
Carbohydrates
Ultraviolet absorbers are molecules used in organic materials (polymers, paints, etc.) to absorb UV radiation to reduce the UV degradation (photo-oxidation) of a material. The absorbers can themselves degrade over time, so monitoring of absorber levels in weathered materials is necessary. In sunscreen, ingredients that absorb UVA/UVB rays, such as avobenzone, oxybenzone and octyl methoxycinnamate, are organic chemical absorbers or "blockers". They are contrasted with inorganic absorbers/"blockers" of UV radiation such as carbon black, titanium dioxide, and zinc oxide. For clothing, the ultraviolet protection factor (UPF) represents the ratio of sunburn-causing UV without and with the protection of the fabric, similar to sun protection factor (SPF) ratings for sunscreen. Standard summer fabrics have UPFs around 6, which means that about 20% of UV will pass through. Suspended nanoparticles in stained-glass prevent UV rays from causing chemical reactions that change image colors. A set of stained-glass color-reference chips is planned to be used to calibrate the color cameras for the 2019 ESA Mars rover mission, since they will remain unfaded by the high level of UV present at the surface of Mars. Common soda–lime glass, such as window glass, is partially transparent to UVA, but is opaque to shorter wavelengths, passing about 90% of the light above 350 nm, but blocking over 90% of the light below 300 nm. A study found that car windows allow 3–4% of ambient UV to pass through, especially if the UV was greater than 380 nm. Other types of car windows can reduce transmission of UV that is greater than 335 nm. Fused quartz, depending on quality, can be transparent even to vacuum UV wavelengths. Crystalline quartz and some crystals such as CaF and MgF transmit well down to 150 nm or 160 nm wavelengths. Wood's glass is a deep violet-blue barium-sodium silicate glass with about 9% nickel oxide developed during World War I to block visible light for covert communications. It allows both infrared daylight and ultraviolet night-time communications by being transparent between 320 nm and 400 nm and also the longer infrared and just-barely-visible red wavelengths. Its maximum UV transmission is at 365 nm, one of the wavelengths of mercury lamps.
4
Ultraviolet Radiation
Cationic polymerization is used in the curing of epoxy resins in the presence of UV in the industry. Light energy from UV breaks apart photoinitiaters, forming an acidic which then donates a proton to the polymer. The monomers then attach themselves to the polymer, forming longer and longer chains leading to a cross-linked network.
4
Ultraviolet Radiation
Book chapters are cited in short form above and long form below. All other sources are cited above only. *Coups, Elliot J. and Phillips, L. Alison (2012). "Prevalence and Correlates of Indoor Tanning", in Carolyn J. Heckman, Sharon L. Manne (eds.), Shedding Light on Indoor Tanning. Dordrecht: Springer Science & Business Media, 5–32. *Hay, Jennifer and Lipsky, Samara (2012), "International Perspectives on Indoor Tanning", in Heckman and Manne (eds)., 179–193. *Hunt, Yvonne; Augustson, Erik; Rutten, Lila; Moser, Richard; and Yaroch, Amy (2012). "History and Culture of Tanning in the United States", in Heckman and Manne (eds.), 33–68. *Lessin, Stuart R; Perlis, Clifford S.; Zook, and Matthew B. Zook (2012). "How Ultraviolet Radiation Tans Skin" in Heckman and Manne (eds.), 87–94. *Lluria-Prevatt, Maria; Dickinson, Sally E.; and Alberts, David S. (2013). "Skin Cancer Prevention", in David Alberts, Lisa M. Hess (eds.). Fundamentals of Cancer Prevention. Heidelberg and Berlin: Springer Verlag, 321–376.
4
Ultraviolet Radiation
Only recently also other extraction applications have been investigated, e.g. the large scale recovery of apolar organics on offshore oil platforms using the so-called Macro-Porous Polymer Extraction (MPPE) Technology. In such an application, where the SIR particles are contained in a packed bed, flow rates from 0.5 m h upward without maximum flow restrictions can apparently be treated cost competitive to air stripping/activated carbon, steam stripping and bio treatment systems, according to the technology developer. Additional investigations, mostly done in an academic environment, include polar organics like amino-alcohols, organic acids, amino acids, flavonoids, and aldehydes on a bench-scale or pilot-scale. Also, the application of SIRs for the separation of more polar solutes, such as for instance ethers and phenols, has been investigated in the group of A.B. de Haan.
1
Separation Processes
In polymer chemistry photo-oxidation (sometimes: oxidative photodegradation) is the degradation of a polymer surface due to the combined action of light and oxygen. It is the most significant factor in the weathering of plastics. Photo-oxidation causes the polymer chains to break (chain scission), resulting in the material becoming increasingly brittle. This leads to mechanical failure and, at an advanced stage, the formation of microplastics. In textiles the process is called phototendering. Technologies have been developed to both accelerate and inhibit this process. For example, plastic building components like doors, window frames and gutters are expected to last for decades, requiring the use of advanced UV-polymer stabilizers. Conversely, single-use plastics can be treated with biodegradable additives to accelerate their fragmentation. Many pigments and dyes can similarly have effects due to their ability to absorb UV-energy.
4
Ultraviolet Radiation
The interaction of micromagnetics with mechanics is also of interest in the context of industrial applications that deal with magneto-acoustic resonance such as in hypersound speakers, high frequency magnetostrictive transducers etc. FEM simulations taking into account the effect of magnetostriction into micromagnetics are of importance. Such simulations use models described above within a finite element framework. Apart from conventional magnetic domains and domain-walls, the theory also treats the statics and dynamics of topological line and point configurations, e.g. magnetic vortex and antivortex states; or even 3d-Bloch points, where, for example, the magnetization leads radially into all directions from the origin, or into topologically equivalent configurations. Thus in space, and also in time, nano- (and even pico-)scales are used. The corresponding topological quantum numbers are thought to be used as information carriers, to apply the most recent, and already studied, propositions in information technology. Another application that has emerged in the last decade is the application of micromagnetics towards neuronal stimulation. In this discipline, numerical methods such as finite-element analysis are used to analyze the electric/magnetic fields generated by the stimulation apparatus; then the results are validated or explored further using in-vivo or in-vitro neuronal stimulation. Several distinct set of neurons have been studied using this methodology including retinal neurons, cochlear neurons, vestibular neurons, and cortical neurons of embryonic rats.
3
Magnetic Ordering
Sensor-based ore sorting is financially especially attractive for low grade or marginal ore or waste dump material. This described scenario describes that waste dump material or marginal ore is sorted and added to the run-of-mine production. The needed capacity for the sensor-based ore sorting step is less in this case such as the costs involved. Requirement is that two crude material streams are fed in parallel, requiring two crushing stations. Alternatively, marginal and high grade ore can be buffered on an intermediate stockpile and dispatched in an alternating operation. The latter option has the disadvantage that the planned production time, the loading, of the sensor-based ore sorter is low, unless a significant intermediate stockpile or bunker is installed. Treating the marginal ore separately has the advantage that less equipment is needed since the processed material stream is lower, but it has the disadvantage that the potential of the technology is not unfolded for the higher grade material, where sensor-based sorting would also add benefit.
1
Separation Processes
In condensed matter physics, a spin glass is a magnetic state characterized by randomness, besides cooperative behavior in freezing of spins at a temperature called "freezing temperature" T. In ferromagnetic solids, component atoms' magnetic spins all align in the same direction. Spin glass when contrasted with a ferromagnet is defined as "disordered" magnetic state in which spins are aligned randomly or without a regular pattern and the couplings too are random. The term "glass" comes from an analogy between the magnetic disorder in a spin glass and the positional disorder of a conventional, chemical glass, e.g., a window glass. In window glass or any amorphous solid the atomic bond structure is highly irregular; in contrast, a crystal has a uniform pattern of atomic bonds. In ferromagnetic solids, magnetic spins all align in the same direction; this is analogous to a crystal's lattice-based structure. The individual atomic bonds in a spin glass are a mixture of roughly equal numbers of ferromagnetic bonds (where neighbors have the same orientation) and antiferromagnetic bonds (where neighbors have exactly the opposite orientation: north and south poles are flipped 180 degrees). These patterns of aligned and misaligned atomic magnets create what are known as frustrated interactions distortions in the geometry of atomic bonds compared to what would be seen in a regular, fully aligned solid. They may also create situations where more than one geometric arrangement of atoms is stable. Spin glasses and the complex internal structures that arise within them are termed "metastable" because they are "stuck" in stable configurations other than the lowest-energy configuration (which would be aligned and ferromagnetic). The mathematical complexity of these structures is difficult but fruitful to study experimentally or in simulations; with applications to physics, chemistry, materials science and artificial neural networks in computer science.
3
Magnetic Ordering
Sperimagnetism is the equivalent of ferrimagnetism for a disordered system with two or more species of magnetic moments, with at least one species locked in random magnetic moments. Sperimagnets possess a permanent net magnetic moment. When all species are the same, this phase is equivalent to asperomagnetism.
3
Magnetic Ordering
The term DNA glycation applies to DNA damage induced by reactive carbonyls (principally methylglyoxal and glyoxal) that are present in cells as by-products of sugar metabolism. Glycation of DNA can cause mutation, breaks in DNA and cytotoxicity. Guanine in DNA is the base most susceptible to glycation. Glycated DNA, as a form of damage, appears to be as frequent as the more well studied oxidative DNA damage. A protein, designated DJ-1 (also known as PARK7), is employed in the repair of glycated DNA bases in humans, and homologs of this protein have also been identified in bacteria.
2
Carbohydrates
The sperm and the egg are incubated together at a ratio of about 75,000:1 in a culture media in order for the actual fertilisation to take place. A review in 2013 came to the result that a duration of this co-incubation of about 1 to 4 hours results in significantly higher pregnancy rates than 16 to 24 hours. In most cases, the egg will be fertilised during co-incubation and will show two pronuclei. In certain situations, such as low sperm count or motility, a single sperm may be injected directly into the egg using intracytoplasmic sperm injection (ICSI). The fertilised egg is passed to a special growth medium and left for about 48 hours until the embryo consists of six to eight cells. In gamete intrafallopian transfer, eggs are removed from the woman and placed in one of the fallopian tubes, along with the mans sperm. This allows fertilisation to take place inside the womans body. Therefore, this variation is actually an in vivo fertilisation, not in vitro.
0
Cryobiology
Counterflow centrifugal elutriation (CCE) is a liquid clarification technique. This method enables scientists to separate different cells with different sizes. Since cell size is correlated with cell cycle stages this method also allows the separation of cells at different stages of the cell cycle.
1
Separation Processes
Treatment of macrophages with lipopolysaccharide (LPS), a major component of the Gram-negative bacteria outer membrane, results in elevated O-GlcNAc in cellular and mouse models. During infection, cytosolic OGT was de-S-nitrosylated and activated. Suppressing O-GlcNAc with DON inhibited the O-GlcNAcylation and nuclear translocation of NF-κB, as well as downstream induction of inducible nitric oxide synthase and IL-1β production. DON treatment also improved cell survival during LPS treatment.
2
Carbohydrates
This is the equation of motion of the magnetization. It describes a Larmor precession of the magnetization around the effective field, with an additional damping term arising from the coupling of the magnetic system to the environment. The equation can be written in the so-called Gilbert form (or implicit form) as: where γ is the electron gyromagnetic ratio and α the Gilbert damping constant. It can be shown that this is mathematically equivalent to the following Landau-Lifshitz (or explicit) form: Where is the Gilbert Damping constant, characterizing how quickly the damping term takes away energy from the system ( = 0, no damping, permanent precession).
3
Magnetic Ordering
Fahy was named as a Fellow of the Society for Cryobiology in 2014, and in 2010 he received the Distinguished Scientist Award for Reproductive Biology from the Reproductive Biology Professional Group of the American Society of Reproductive Medicine. He received the Cryopreservation Award from the International Longevity and Cryopreservation Summit held in Madrid, Spain in 2017 in recognition of his career in and dedication to the field of cryobiology. Fahy also received the Grand Prize for Medicine from INPEX in 1995 for his invention of computerized organ cryoprotectant perfusion technology. In 2005, he was recognized as a Fellow of the American Aging Association.
0
Cryobiology
At least for vitiligo, narrowband ultraviolet B (UVB) nanometer phototherapy is now used more commonly than PUVA since it does not require the use of the psoralen. As with PUVA, treatment is carried out 2 to 3 times a week in a clinic or every day at home, and there is no need to use psoralen. Narrowband UVB therapy is less effective for the legs and hands, compared to the face and neck. To the hands and legs PUVA may be more effective. The reason can be because UVA penetrates deeper in the skin, and the melanocytes in the skin of the hands and legs are positioned deeper in the skin. Narrowband UVB 311 nanometer is blocked by the topmost skin layer, and UVA 365 nanometer reaches the melanocytes that are in the bottom skin layer. Melanin is a dark pigment of the skin and the melanocytes produce it. The melanocytes produce melanin when their receptors detect UV light. The purpose of the melanin is to block UV light so that it will not cause damage to the body cells under the skin.
4
Ultraviolet Radiation
As mentioned above, the CCE separates cells based on their sedimentation property but not specific features (e.g. surface protein, cell shape). It cannot separate different types of cells which have similar sedimentation properties. This means that previous purification needs to be done for mixed cell type sample. The CCE is also limited to cells which are able to be individually suspended in the buffer solution. Cells which always attach to something cannot be separated by the CCE.
1
Separation Processes
Showy Indian clover, Trifolium amoenum, is an example of a species that was thought to be extinct, but was rediscovered in 1993 in the form of a single plant at a site in western Sonoma County. Seeds were harvested and the species grown in ex situ facilities. The Wollemi pine is another example of a plant that is being preserved via ex situ conservation, as they are being grown in nurseries to be sold to the general public. The Orange-bellied parrot, with a wild population of 14 birds as of early February 2017, are being bred in a captive breeding program. The captive population consists of around 300 birds.
0
Cryobiology