nreimers's picture
Create README.md
85c2eca
metadata
annotations_creators:
  - expert-generated
language:
  - en
multilinguality:
  - multilingual
size_categories: []
source_datasets: []
tags: []
task_categories:
  - text-retrieval
license:
  - apache-2.0
task_ids:
  - document-retrieval

Wikipedia (en) embedded with cohere.ai multilingual-22-12 encoder

We encoded Wikipedia (en) using the cohere.ai multilingual-22-12 embedding model.

To get an overview how this dataset was created and pre-processed, have a look at Cohere/wikipedia-22-12.

Embeddings

We compute for title+" "+text the embeddings using our multilingual-22-12 embedding model, a state-of-the-art model that works for semantic search in 100 languages. If you want to learn more about this model, have a look at cohere.ai multilingual embedding model.

Further languages

We provide embeddings of Wikipedia in many different languages: ar, de, en, es, fr, hi, it, ja, ko, simple english, zh,

You can find the Wikipedia datasets without embeddings at Cohere/wikipedia-22-12.

Loading the dataset

You can either load the dataset like this:

from datasets import load_dataset
docs = load_dataset(f"Cohere/wikipedia-22-12-en-embeddings", split="train")

Or you can also stream it without downloading it before:

from datasets import load_dataset
docs = load_dataset(f"Cohere/wikipedia-22-12-en-embeddings", split="train", streaming=True)

for doc in docs:
    docid = doc['id']
    title = doc['title']
    text = doc['text']
    emb = doc['emb']

Search

A full search example:

#Run: pip install cohere datasets
from datasets import load_dataset
import torch
import cohere

co = cohere.Client(f"<<COHERE_API_KEY>>")  # Add your cohere API key from www.cohere.com

#Load at max 1000 documents + embeddings
max_docs = 1000
docs_stream = load_dataset(f"Cohere/wikipedia-22-12-en-embeddings", split="train", streaming=True)

docs = []
doc_embeddings = []

for doc in docs_stream:
    docs.append(doc)
    doc_embeddings.append(doc['emb'])
    if len(docs) >= max_docs:
        break

doc_embeddings = torch.tensor(doc_embeddings)

query = 'Who founded Youtube'
response = co.embed(texts=[query], model='multilingual-22-12')
query_embedding = response.embeddings 
query_embedding = torch.tensor(query_embedding)

# Compute dot score between query embedding and document embeddings
dot_scores = torch.mm(query_embedding, doc_embeddings.transpose(0, 1))
top_k = torch.topk(dot_scores, k=3)

# Print results
print("Query:", query)
for doc_id in top_k.indices[0].tolist():
    print(docs[doc_id]['title'])
    print(docs[doc_id]['text'], "\n")

Performance

You can find performance on the MIRACL dataset (a semantic search evaluation dataset) here: miracl-en-queries-22-12#performance