id
int64 1
16.4k
| Question
stringlengths 16
191
| Context
stringlengths 6
29k
| Topic
stringclasses 9
values | Answer
stringlengths 1
179
|
---|---|---|---|---|
15,201 | Who is at risk for ? ? | Measles: Make Sure Your Child Is Protected with MMR Vaccine Measles starts with a fever. Soon after, it causes a cough, runny nose, and red eyes. Then a rash of tiny, red spots breaks out. Measles can be serious for young children. Learn about protecting your child from measles with MMR vaccine. Protect your child at every age. Click on your child's age group for vaccine information. View or print age-specific vaccine information [252 KB, 27 pages] Records & Requirements Recording immunizations Finding immunization records Interpreting abbreviations on records Immunization requirements for child care and schools Making the Vaccine Decision How vaccines prevent diseases Vaccine side effects/risks Vaccine ingredients Ensuring vaccine safety Vaccines and your child’s immune system Learn More About Preteen and Teen Vaccines The Vaccines For Children program has helped prevent diseases and save lives…big time! [enlarged view] Watch The Immunization Baby Book Learn what vaccines your child needs, when they are needed, and why it is so important to follow the CDC’s recommended immunization schedule as you flip through this video baby book (4:04 mins) on CDC-TV or on YouTube. Who & When (Immunization Schedules) Birth through 6 Years Schedule [2 pages] Create a schedule for your child 7 through 18 Years Schedule [2 pages] 19 Years and Older Schedule [2 pages] Learn more about how CDC sets the immunization schedule for your family Knowing the childhood vaccination rates in your community is important. More Diseases and the Vaccines that Prevent Them Learn more about the 16 diseases that can be prevented with vaccines, as well as the benefits and risks of vaccination. Learn More About... Adoption and Vaccines Pregnancy Help Paying for Vaccines Evaluating Information on the Web | Disease_Control_Prevention | vaccination |
15,202 | How to prevent ? | Vaccines and Preventable Diseases On this Page Vaccine Shortages & Delays Potential New Vaccines Vaccines: The Basics FAQ about Vaccines & Diseases they Prevent VACCINE-PREVENTABLE DISEASES OR, find it by Vaccine Anthrax Cervical Cancer Diphtheria Hepatitis A Hepatitis B Haemophilus influenzae type b (Hib) Human Papillomavirus (HPV) H1N1 Flu (Swine Flu) Influenza (Seasonal Flu) Japanese Encephalitis (JE) Measles Meningococcal Mumps Pertussis (Whooping Cough) Pneumococcal Poliomyelitis (Polio) Rabies Rotavirus Rubella (German Measles) Shingles (Herpes Zoster) Smallpox Tetanus (Lockjaw) Tuberculosis Typhoid Fever Varicella (Chickenpox) Yellow Fever At a Glance Vaccine-preventable disease levels are at or near record lows. Even though most infants and toddlers have received all recommended vaccines by age 2, many under-immunized children remain, leaving the potential for outbreaks of disease. Many adolescents and adults are under-immunized as well, missing opportunities to protect themselves against diseases such as Hepatitis B, influenza, and pneumococcal disease. CDC works closely with public health agencies and private partners to improve and sustain immunization coverage and to monitor the safety of vaccines so that this public health success story can be maintained and expanded in the century to come. Vaccine Shortages & Delays The latest national information about vaccine supplies and guidance for healthcare providers who are facing vaccine shortages or delays Chart of shortages & delays Potential New Vaccines Resources for finding information on potential vaccines, research and development status, licensure status, etc. New Vaccine Surveillance Network Program evaluates impact of new vaccines and vaccine policies through a network of 6 US sites Status of Licensure and Recs for New Vaccines American Academy of Pediatrics (AAP) Potential New Vaccines Immunization Action Coalition (IAC) Vaccines: The Basics Without vaccines, epidemics of many preventable diseases could return, resulting in increased – and unnecessary – illness, disability, and death. All about vaccines How vaccines prevent disease List of all vaccine-preventable diseases List of all vaccines used in United States Photos of vaccine-preventable diseases and/or people affected by them View all... FAQ about Vaccines & Diseases they Prevent What are the ingredients in vaccines? What vaccines do adults need? What vaccines do children need? What vaccines are used in the United States? What diseases do vaccines prevent? View all... Related Pages Basics and Common Questions Who Should NOT Get These Vaccines? Unprotected Stories Top of Page Images and logos on this website which are trademarked/copyrighted or used with permission of the trademark/copyright or logo holder are not in the public domain. These images and logos have been licensed for or used with permission in the materials provided on this website. The materials in the form presented on this website may be used without seeking further permission. Any other use of trademarked/copyrighted images or logos requires permission from the trademark/copyright holder...more This graphic notice means that you are leaving an HHS Web site. For more information, please see the Exit Notification and Disclaimer policy. | Disease_Control_Prevention | disease List of all vaccine-preventable diseases |
15,203 | what diseases are vaccine preventable | List of Vaccine-Preventable Diseases The following links will lead you to the main page that describes both the disease and the vaccine(s). Vaccines are available for all of the following vaccine-preventable diseases (unless otherwise noted): Anthrax Cervical Cancer (Human Papillomavirus) Diphtheria Hepatitis A Hepatitis B Haemophilus influenzae type b (Hib) Human Papillomavirus (HPV) Influenza (Flu) Japanese encephalitis (JE) Measles Meningococcal Mumps Pertussis Pneumococcal Polio Rabies Rotavirus Rubella Shingles (Herpes Zoster) Smallpox Tetanus Typhoid Tuberculosis (TB) Varicella (Chickenpox) Yellow Fever Related Pages For Parents: What You Need to Know List of Vaccines Used in U.S. Photos of diseases Top of Page Images and logos on this website which are trademarked/copyrighted or used with permission of the trademark/copyright or logo holder are not in the public domain. These images and logos have been licensed for or used with permission in the materials provided on this website. The materials in the form presented on this website may be used without seeking further permission. Any other use of trademarked/copyrighted images or logos requires permission from the trademark/copyright holder...more This graphic notice means that you are leaving an HHS Web site. For more information, please see the Exit Notification and Disclaimer policy. | Disease_Control_Prevention | Anthrax Cervical Cancer (Human Papillomavirus |
15,204 | how is hps diagnosed and treated for Hantavirus ? | Diagnosing HPS
Diagnosing HPS in an individual who has only been infected a few days is difficult, because early symptoms such as fever, muscle aches, and fatigue are easily confused with influenza. However, if the individual is experiencing fever and fatigue and has a history of potential rural rodent exposure, together with shortness of breath, would be strongly suggestive of HPS. If the individual is experiencing these symptoms they should see their physician immediately and mention their potential rodent exposure.
Treating HPS
There is no specific treatment, cure, or vaccine for hantavirus infection. However, we do know that if infected individuals are recognized early and receive medical care in an intensive care unit, they may do better. In intensive care, patients are intubated and given oxygen therapy to help them through the period of severe respiratory distress.
The earlier the patient is brought in to intensive care, the better. If a patient is experiencing full distress, it is less likely the treatment will be effective.
Therefore, if you have been around rodents and have symptoms of fever, deep muscle aches, and severe shortness of breath, see your doctor immediately. Be sure to tell your doctor that you have been around rodents—this will alert your physician to look closely for any rodent-carried disease, such as HPS. | Disease_Control_Prevention | vaccine |
15,205 | what are the symptoms for Hantavirus ? | Due to the small number of HPS cases, the "incubation time" is not positively known. However, on the basis of limited information, it appears that symptoms may develop between 1 and 5 weeks after exposure to fresh urine, droppings, or saliva of infected rodents.
Early Symptoms
Early symptoms include fatigue, fever and muscle aches, especially in the large muscle groups—thighs, hips, back, and sometimes shoulders. These symptoms are universal.
There may also be headaches, dizziness, chills, and abdominal problems, such as nausea, vomiting, diarrhea, and abdominal pain. About half of all HPS patients experience these symptoms.
Late Symptoms
Four to 10 days after the initial phase of illness, the late symptoms of HPS appear. These include coughing and shortness of breath, with the sensation of, as one survivor put it, a "...tight band around my chest and a pillow over my face" as the lungs fill with fluid.
Is the Disease Fatal?
Yes. HPS can be fatal. It has a mortality rate of 38%. | Disease_Control_Prevention | coughing and shortness of breath |
15,206 | how can hps be prevented for Hantavirus ? | Eliminate or minimize contact with rodents in your home, workplace, or campsite. If rodents don't find that where you are is a good place for them to be, then you're less likely to come into contact with them. Seal up holes and gaps in your home or garage. Place traps in and around your home to decrease rodent infestation. Clean up any easy-to-get food.
Recent research results show that many people who became ill with HPS developed the disease after having been in frequent contact with rodents and/or their droppings around a home or a workplace. On the other hand, many people who became ill reported that they had not seen rodents or rodent droppings at all. Therefore, if you live in an area where the carrier rodents are known to live, try to keep your home, vacation place, workplace, or campsite clean.
For more information on how you can prevent rodent infestations, the following information is available on the CDC Rodents site: | Disease_Control_Prevention | keep your home, vacation place, workplace, or campsite clean |
15,207 | what is the history of hps for Hantavirus ? | The "First"Outbreak
In May 1993, an outbreak of an unexplained pulmonary illness occurred in the southwestern United States, in an area shared by Arizona, New Mexico, Colorado and Utah known as "The Four Corners". A young, physically fit Navajo man suffering from shortness of breath was rushed to a hospital in New Mexico and died very rapidly.
While reviewing the results of the case, medical personnel discovered that the young man's fiancée had died a few days before after showing similar symptoms, a piece of information that proved key to discovering the disease. As Dr. James Cheek of the Indian Health Service (IHS) noted, "I think if it hadn't been for that initial pair of people that became sick within a week of each other, we never would have discovered the illness at all".
An investigation combing the entire Four Corners region was launched by the New Mexico Office of Medical Investigations (OMI) to find any other people who had a similar case history. Within a few hours, Dr. Bruce Tempest of IHS, working with OMI, had located five young, healthy people who had all died after acute respiratory failure.
A series of laboratory tests had failed to identify any of the deaths as caused by a known disease, such as bubonic plague. At this point, the CDC Special Pathogens Branch was notified. CDC, the state health departments of New Mexico, Colorado and Utah, the Indian Health Service, the Navajo Nation, and the University of New Mexico all joined together to confront the outbreak.
During the next few weeks, as additional cases of the disease were reported in the Four Corners area, physicians and other scientific experts worked intensively to narrow down the list of possible causes. The particular mixture of symptoms and clinical findings pointed researchers away from possible causes, such as exposure to a herbicide or a new type of influenza, and toward some type of virus. Samples of tissue from patients who had gotten the disease were sent to CDC for exhaustive analysis. Virologists at CDC used several tests, including new methods to pinpoint virus genes at the molecular level, and were able to link the pulmonary syndrome with a virus, in particular a previously unknown type of hantavirus.
Researchers Launch Investigations to Pin Down the Carrier of the New Virus
Researchers knew that all other known hantaviruses were transmitted to people by rodents, such as mice and rats. Therefore, an important part of their mission was to trap as many different species of rodents living in the Four Corners region as possible to find the particular type of rodent that carried the virus. From June through mid-August of 1993, all types of rodents were trapped inside and outside homes where people who had hantavirus pulmonary syndrome had lived, as well as in piñon groves and summer sheep camps where they had worked. Additional rodents were trapped for comparison in and around nearby households as well. Taking a calculated risk, researchers decided not to wear protective clothing or masks during the trapping process. "We didn't want to go in wearing respirators, scaring...everybody", John Sarisky, an Indian Health Service environmental disease specialist said. However, when the almost 1,700 rodents trapped were dissected to prepare samples for analysis at CDC, protective clothing and respirators were worn.
Among rodents trapped, the deer mouse (Peromyscus maniculatus) was found to be the main host to a previously unknown type of hantavirus. Since the deer mouse often lives near people in rural and semi-rural areas—in barns and outbuildings, woodpiles, and inside people's homes—researchers suspected that the deer mouse might be transmitting the virus to humans. About 30% of the deer mice tested showed evidence of infection with hantavirus. Tests also showed that several other types of rodents were infected, although in lesser numbers.
The next step was to pin down the connection between the infected deer mice and households where people who had gotten the disease lived. Therefore, investigators launched a case-control investigation. They compared "case" households, where people who had gotten the disease lived, with nearby "control" households. Control households were similar to those where the case-patients lived, except for one factor: no one in the control households had gotten the disease.
The results? First, investigators trapped more rodents in case households than in control households, so more rodents may have been living in close contact with people in case households. Second, people in case households were more likely than those in control households to do cleaning around the house or to plant in or hand-plow soil outdoors in fields or gardens. However, it was unclear if the risk for contracting HPS was due to performing these tasks, or with entering closed-up rooms or closets to get tools needed for these tasks.
In November 1993, the specific hantavirus that caused the Four Corners outbreak was isolated. The Special Pathogens Branch at CDC used tissue from a deer mouse that had been trapped near the New Mexico home of a person who had gotten the disease and grew the virus from it in the laboratory. Shortly afterwards and independently, the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) also grew the virus, from a person in New Mexico who had gotten the disease as well as from a mouse trapped in California.
The new virus was called Muerto Canyon virus — later changed to Sin Nombre virus (SNV) — and the new disease caused by the virus was named hantavirus pulmonary syndrome, or HPS.
The isolation of the virus in a matter of months was remarkable. This success was based on close cooperation of all the agencies and individuals involved in investigating the outbreak, years of basic research on other hantaviruses that had been conducted at CDC and USAMRIID, and on the continuing development of modern molecular virologic tests. To put the rapid isolation of the Sin Nombre virus in perspective, it took several decades for the first hantavirus discovered, the Hantaan virus, to be isolated.
HPS Not Really a New Disease
As part of the effort to locate the source of the virus, researchers located and examined stored samples of lung tissue from people who had died of unexplained lung disease. Some of these samples showed evidence of previous infection with Sin Nombre virus—indicating that the disease had existed before the "first" known outbreak—it simply had not been recognized!
Other early cases of HPS have been discovered by examining samples of tissue belonging to people who had died of unexplained adult respiratory distress syndrome. By this method, the earliest known case of HPS that has been confirmed has been the case of a 38-year-old Utah man in 1959.
Interestingly, while HPS was not known to the epidemiologic and medical communities, there is evidence that it was recognized elsewhere. The Navajo Indians, a number of whom contracted HPS during the 1993 outbreak, recognize a similar disease in their medical traditions, and actually associate its occurrence with mice. As strikingly, Navajo medical beliefs concur with public health recommendations for preventing the disease.
Why Did the Outbreak Occur in the Four Corners Area?
But why this sudden cluster of cases? The key answer to this question is that, during this period, there were suddenly many more mice than usual. The Four Corners area had been in a drought for several years. Then, in early 1993, heavy snows and rainfall helped drought-stricken plants and animals to revive and grow in larger-than-usual numbers. The area's deer mice had plenty to eat, and as a result they reproduced so rapidly that there were ten times more mice in May 1993 than there had been in May of 1992. With so many mice, it was more likely that mice and humans would come into contact with one another, and thus more likely that the hantavirus carried by the mice would be transmitted to humans.
Person-to-Person Spread of HPS Decided Unlikely
"Although person-to-person spread [of HPS] has not been documented with any of the other known hantaviruses, we were concerned [during this outbreak] because we were dealing with a new agent", said Charles Vitek, a CDC medical investigator.
Researchers and clinicians investigating the ongoing outbreak were not the only groups concerned about the disease. Shortly after the first few HPS patients died and it became clear that a new disease was affecting people in the area, and that no one knew how it was transmitted, the news media began extensive reporting on the outbreak. Widespread concern among the public ensued.
Unfortunately, the first victims of the outbreak were Navajo. News reports focused on this fact, and the misperception grew that the unknown disease was somehow linked to Navajos. As a consequence, Navajos found themselves at the center of intense media attention and the objects of the some people's fears.
By later in the summer of 1993, the media frenzy had quieted somewhat, and the source of the disease was pinpointed. Researchers determined that, like other hantaviruses, the virus that causes HPS is not transmitted from person to person the way other infections, such as the common cold, may be. The exception to this is an outbreak of HPS in Argentina in 1996. Evidence from this outbreak suggests that strains of hantaviruses in South America may be transmissable from person to person.
To date, no cases of HPS have been reported in the United States in which the virus was transmitted from one person to another. In fact, in a study of health care workers who were exposed to either patients or specimens infected with related types of hantaviruses (which cause a different disease in humans), none of the workers showed evidence of infection or illness.
HPS Since the First Outbreak
After the initial outbreak, the medical community nationwide was asked to report any cases of illness with symptoms similar to those of HPS that could not be explained by any other cause. As a result, additional cases have been reported.
Since 1993, researchers have discovered that there is not just one hantavirus that causes HPS, but several. In June 1993, a Louisiana bridge inspector who had not traveled to the Four Corners area developed HPS. An investigation was begun. The patient's tissues were tested for the presence of antibodies to hantavirus. The results led to the discovery of another hantavirus, named Bayou virus, which was linked to a carrier, the rice rat (Oryzomys palustris). In late 1993, a 33-year-old Florida man came down with HPS symptoms; he later recovered. This person also had not traveled to the Four Corners area. A similar investigation revealed yet another hantavirus, named the Black Creek Canal virus, and its carrier, the cotton rat (Sigmodon hispidus). Another case occurred in New York. This time, the Sin Nombre-like virus was named New York-1, and the white-footed mouse (Peromyscus leucopus), was implicated as the carrier.
More recently, cases of HPS stemming from related hantaviruses have been documented in Argentina, Brazil, Canada, Chile, Paraguay, and Uruguay, making HPS a pan-hemispheric disease.
References
Information for this page was developed using the CDC video Preventing Hantavirus Disease and resource articles listed in the bibliography. | Disease_Control_Prevention | CDC video Preventing Hantavirus Disease |
15,208 | What is (are) Parasites - Babesiosis ? | Babesiosis is caused by microscopic parasites that infect red blood cells. Most human cases of Babesia infection in the United States are caused by the parasite Babesia microti. Occasional cases caused by other species (types) of Babesia have been detected. Babesia microti is spread in nature by Ixodes scapularis ticks (also called blacklegged ticks or deer ticks). Tickborne transmission is most common in particular regions and seasons: it mainly occurs in parts of the Northeast and upper Midwest; and it usually peaks during the warm months. Babesia infection can range in severity from asymptomatic to life threatening. The infection is both treatable and preventable.
Frequently Asked Questions (FAQs)
Podcasts | Disease_Control_Prevention | Frequently Asked Questions |
15,209 | Who is at risk for Parasites - Babesiosis? ? | People can get infected with Babesia parasites in several ways:
- The main way is through the bite of an infected tick—during outdoor activities in areas where babesiosis is found (see below).
- A less common way is by getting a transfusion from a blood donor who has a Babesia infection but does not have any symptoms. (No tests have been licensed yet for screening blood donors for Babesia.)
- Rare cases of congenital transmission—from an infected mother to her baby (during pregnancy or delivery)—have been reported.
Babesia parasites are not transmitted from person-to-person like the flu or the common cold.
Many different species (types) of Babesia parasites have been found in animals, only a few of which have been found in people. Babesia microti—which usually infects white-footed mice and other small mammals—is the main species that has been found in people in the United States. Occasional (sporadic) cases of babesiosis caused by other Babesia species have been detected.
Babesia microti is transmitted in nature by Ixodes scapularis ticks (also called blacklegged ticks or deer ticks).
- Tickborne transmission primarily occurs in the Northeast and upper Midwest, especially in parts of New England, New York state, New Jersey, Wisconsin, and Minnesota.
- The parasite typically is spread by the young nymph stage of the tick, which is most apt to be found (seeking or "questing" for a blood meal) during warm months (spring and summer), in areas with woods, brush, or grass.
- Infected people might not recall a tick bite because I. scapularis nymphs are very small (about the size of a poppy seed). | Disease_Control_Prevention | The parasite typically is spread by the young nymph stage of the tick |
15,210 | How to diagnose Parasites - Babesiosis ? | In symptomatic people, babesiosis usually is diagnosed by examining blood specimens under a microscope and seeing Babesia parasites inside red blood cells.
To be sure the diagnosis is correct, your health care provider might have specimens of your blood tested by a specialized reference laboratory (such as at CDC or a health department).
More on: Resources for Health Professionals: Diagnosis | Disease_Control_Prevention | examining blood specimens under a microscope |
15,211 | What are the treatments for Parasites - Babesiosis ? | Effective treatments are available. People who do not have any symptoms or signs of babesiosis usually do not need to be treated.
Before considering treatment, the first step is to make sure the diagnosis is correct.
For more information, people should talk to their health care provider.
More on: Resources for Health Professionals: Treatment | Disease_Control_Prevention | Effective treatments |
15,212 | How to prevent Parasites - Babesiosis ? | Steps can be taken to reduce the risk for babesiosis and other tickborne infections. The use of prevention measures is especially important for people at increased risk for severe babesiosis (for example, people who do not have a spleen). Avoiding exposure to tick habitats is the best defense.
Babesia microti is spread by Ixodes scapularis ticks, which are mostly found in wooded, brushy, or grassy areas, in certain regions and seasons. No vaccine is available to protect people against babesiosis. However, people who live, work, or travel in tick-infested areas can take simple steps to help protect themselves against tick bites and tickborne infections.
During outdoor activities in tick habitats, take precautions to keep ticks off the skin.
- Walk on cleared trails and stay in the center of the trail, to minimize contact with leaf litter, brush, and overgrown grasses, where ticks are most likely to be found.
- Minimize the amount of exposed skin, by wearing socks, long pants, and a long-sleeved shirt. Tuck the pant legs into the socks, so ticks cannot crawl up the inside of the pants. Wear light-colored clothing, to make it easier to see and remove ticks before they attach to skin.
- Apply repellents to skin and clothing. Follow the instructions on the product label.
- Products that contain DEET (N,N-diethylmetatoluamide) can be directly applied to exposed skin and to clothing, to help keep ticks away (by repelling them). The product label includes details about how and where to apply the repellent, how often to reapply it, and how to use it safely on children.
- Permethrin products can be applied to clothing/boots (not to skin), actually kill ticks that come in contact with the treated clothing, and usually stay effective through several washings.
After outdoor activities, conduct daily tick checks and promptly remove any ticks that are found. Thorough, daily tick checks are very important. The I. scapularis nymphs that typically spread B. microti are so small (about the size of a poppy seed) that they are easily overlooked. But they usually must stay attached to a person for more than 36-48 hours to be able to transmit the parasite.
- Remove ticks from clothing and pets before going indoors.
- Conduct a full-body exam for ticks. Use a hand-held or full-length mirror to view all parts of the body. Be sure to check behind the knees, between the legs (groin/thighs), between the toes, under the arms (armpits), around the waist, inside the belly button, the back of the neck, behind and in the ears, as well as in and around the scalp, hairline, and hair. Remember to check children and pets, too.
Remove ticks that are attached to the skin as soon as possible, preferably by using pointed (fine-tipped) tweezers. Grab the tick’s mouth parts close to the skin, and slowly pull the tick straight out (with steady outward pressure), until the tick lets go.
More on: Removing Ticks
More on: Ticks | Disease_Control_Prevention | Conduct a full-body exam |
15,213 | How to diagnose Tuberculosis (TB) ? | Tuberculosis (TB) is a disease that is spread through the air from one person to another. There are two kinds of tests that are used to determine if a person has been infected with TB bacteria: the tuberculin skin test and TB blood tests.
A positive TB skin test or TB blood test only tells that a person has been infected with TB bacteria. It does not tell whether the person has latent TB infection (LTBI) or has progressed to TB disease. Other tests, such as a chest x-ray and a sample of sputum, are needed to see whether the person has TB disease.
Tuberculin skin test: The TB skin test (also called the Mantoux tuberculin skin test) is performed by injecting a small amount of fluid (called tuberculin) into the skin in the lower part of the arm. A person given the tuberculin skin test must return within 48 to 72 hours to have a trained health care worker look for a reaction on the arm. The health care worker will look for a raised, hard area or swelling, and if present, measure its size using a ruler. Redness by itself is not considered part of the reaction.
The skin test result depends on the size of the raised, hard area or swelling. It also depends on the person’s risk of being infected with TB bacteria and the progression to TB disease if infected.
- Positive skin test: This
means the person’s body was infected with TB bacteria. Additional tests are needed to determine if the person has latent TB infection or TB disease. A health care worker will then provide treatment as needed.
- Negative skin test: This means the person’s body did not react to the test, and that latent TB infection or TB disease is not likely.
TB blood tests:
TB blood tests (also called interferon-gamma release assays or IGRAs) measure how the immune system reacts to the bacteria that cause TB. An IGRA measures how strong a person’s immune system reacts to TB bacteria by testing the person’s blood in a laboratory.
Two IGRAs are approved by the U.S. Food and Drug Administration (FDA) and are available in the United States:
- QuantiFERON®–TB Gold In-Tube test (QFT-GIT)
- T-SPOT®.TB test (T-Spot)
- Positive IGRA: This means that the person has been infected with TB bacteria. Additional tests are needed to determine if the person has latent TB infection or TB disease. A health care worker will then provide treatment as needed.
- Negative IGRA: This means that the person’s blood did not react to the test and that latent TB infection or TB disease is not likely.
IGRAs are the preferred method of TB infection testing for the following:
- People who have a difficult time returning for a second appointment to look for a reaction to the TST.
There is no problem with repeated IGRAs.
Testing for TB in BCG-Vaccinated Persons
Many people born outside of the United States have been BCG-vaccinated.
People who have had a previous BCG vaccine may receive a TB skin test. In some people, BCG may cause a positive skin test when they are not infected with TB bacteria. If a TB skin test is positive, additional tests are needed.
IGRAs, unlike the TB skin tests, are not affected by prior BCG vaccination and are not expected to give a false-positive result in people who have received BCG.
Choosing a TB Test
The person’s health care provider should choose which TB test to use. Factors in selecting which test to use include the reason for testing, test availability, and cost. Generally, it is not recommended to test a person with both a TST and an IGRA.
Diagnosis of Latent TB Infection or TB Disease
If a person is found to be infected with TB bacteria, other tests are needed to see if the person has TB disease.
TB disease can be diagnosed by medical history, physical examination, chest x-ray, and other laboratory tests. TB disease is treated by taking several drugs as recommended by a health care provider.
If a person does not have TB disease, but has TB bacteria in the body, then latent TB infection is diagnosed. The decision about treatment for latent TB infection will be based on a person’s chances of developing TB disease.
Diagnosis of TB Disease
People suspected of having TB disease should be referred for a medical evaluation, which will include
- Medical history,
- Physical examination,
- Test for TB infection (TB skin test or TB blood test),
- Chest radiograph (X-ray), and
- Appropriate laboratory tests
See Diagnosis of TB (Fact sheet) for more information about TB diagnosis.
Related Links
For Patients
For Health Care Providers | Disease_Control_Prevention | spread through the air from one person to another |
15,214 | How to prevent Tuberculosis (TB) ? | Infection Control in Health Care Settings
Tuberculosis (TB) transmission has been documented in health care settings where health care workers and patients come in contact with people who have TB disease.
People who work or receive care in health care settings are at higher risk for becoming infected with TB; therefore, it is necessary to have a TB infection control plan as part of a general infection control program designed to ensure the following:
- prompt detection of infectious patients,
- airborne precautions, and
- treatment of people who have suspected or confirmed TB disease.
In order to be effective, the primary emphasis of a TB infection control program should be on achieving these three goals.
In all health care settings, particularly those in which people are at high risk for exposure to TB, policies and procedures for TB control should be developed, reviewed periodically, and evaluated for effectiveness to determine the actions necessary to minimize the risk for transmission of TB.
The TB infection control program should be based on a three-level hierarchy of control measures and include:
- Administrative measures
- Environmental controls
- Use of respiratory protective equipment
The first and most important level of the hierarchy, administrative measures, impacts the largest number of people. It is intended primarily to reduce the risk of uninfected people who are exposed to people who have TB disease.
The second level of the hierarchy is the use of environmental controls to reduce the amount of TB in the air. The first two control levels of the hierarchy also minimize the number of areas in the health care setting where exposure to TB may occur.
The third level of the hierarchy is the use of respiratory protective equipment in situations that pose a high risk of exposure to TB. Use of respiratory protection equipment can further reduce the risk for exposure of health care workers.
More: Information about Infection Control in Health Care Settings
TB Prevention
Preventing Exposure to TB Disease While Traveling Abroad
Travelers should avoid close contact or prolonged time with known TB patients in crowded, enclosed environments (for example, clinics, hospitals, prisons, or homeless shelters).
Travelers who will be working in clinics, hospitals, or other health care settings where TB patients are likely to be encountered should consult infection control or occupational health experts. They should ask about administrative and environmental procedures for preventing exposure to TB. Once those procedures are implemented, additional measures could include using personal respiratory protective devices.
Travelers who anticipate possible prolonged exposure to people with TB (for example, those who expect to come in contact routinely with clinic, hospital, prison, or homeless shelter populations) should have a tuberculin skin test (TST) or interferon-gamma release assay (IGRA) test before leaving the United States. If the test reaction is negative, they should have a repeat test 8 to 10 weeks after returning to the United States. Additionally, annual testing may be recommended for those who anticipate repeated or prolonged exposure or an extended stay over a period of years. Because people with HIV infection are more likely to have an impaired response to both the TST and IGRA, travelers who are HIV positive should tell their physicians about their HIV infection status.
More: Tuberculosis Information for International Travelers
What to Do If You Have Been Exposed to TB
If you think you have been exposed to someone with TB disease, contact your health care provider or local health department to see if you should be tested for TB. Be sure to tell the doctor or nurse when you spent time with someone who has TB disease.
More: What to Do If You Have Been Exposed to TB
Preventing Latent TB Infection from Progressing to TB Disease
Many people who have latent TB infection never develop TB disease. But some people who have latent TB infection are more likely to develop TB disease than others. Those at high risk for developing TB disease include:
- People with HIV infection
- People who became infected with TB bacteria in the last 2 years
- Babies and young children
- People who inject illegal drugs
- People who are sick with other diseases that weaken the immune system
- Elderly people
- People who were not treated correctly for TB in the past
If you have latent TB infection and you are in one of these high-risk groups, you should take medicine to keep from developing TB disease. There are several treatment options for latent TB infection. You and your health care provider must decide which treatment is best for you. If you take your medicine as instructed, it can keep you from developing TB disease. Because there are less bacteria, treatment for latent TB infection is much easier than treatment for TB disease. A person with TB disease has a large amount of TB bacteria in the body. Several drugs are needed to treat TB disease. | Disease_Control_Prevention | Use of respiratory protection equipment |
15,215 | What are the treatments for Tuberculosis (TB) ? | Tuberculosis (TB) is caused by a bacterium called Mycobacterium tuberculosis. The bacteria usually attack the lungs, but TB bacteria can attack any part of the body such as the kidney, spine, and brain. If not treated properly, TB disease can be fatal.
Not everyone infected with TB bacteria becomes sick. As a result, two TB-related conditions exist: latent TB infection and TB disease. Both latent TB infection and TB disease can be treated. Learn more about the difference between latent TB infection and TB disease.
Treatment for Latent TB Infection
People with latent TB infection have TB bacteria in their bodies, but they are not sick because the bacteria are not active. People with latent TB infection do not have symptoms, and they cannot spread TB bacteria to others. However, if TB bacteria become active in the body and multiply, the person will go from having latent TB infection to being sick with TB disease. For this reason, people with latent TB infection are often prescribed treatment to prevent them from developing TB disease. Treatment of latent TB infection is essential for controlling and eliminating TB in the United States.
Because there are less bacteria in a person with latent TB infection, treatment is much easier. Four regimens are approved for the treatment of latent TB infection. The medications used to treat latent TB infection include:
- isoniazid (INH)
- rifampin (RIF)
- rifapentine (RPT)
Certain groups of people (such as people with weakened immune systems) are at very high risk of developing TB disease once infected with TB bacteria. Every effort should be made to begin appropriate treatment and to ensure completion of the entire course of treatment for latent TB infection.
More: Treatment for Latent TB Infection
Treatment for TB Disease
TB bacteria become active (multiplying in the body) if the immune system can't stop them from growing. When TB bacteria are active, this is called TB disease. TB disease will make a person sick. People with TB disease may spread the bacteria to people with whom they spend many hours.
TB disease can be treated by taking several drugs for 6 to 9 months. There are 10 drugs currently approved by the U.S. Food and Drug Administration (FDA) for treating TB. Of the approved drugs, the first-line anti-TB agents that form the core of treatment regimens include:
- isoniazid (INH)
- rifampin (RIF)
- ethambutol (EMB)
- pyrazinamide (PZA)
Regimens for treating TB disease have an initial phase of 2 months, followed by a choice of several options for the continuation phase of either 4 or 7 months (total of 6 to 9 months for treatment). Learn more about the continuation phase of treatment.
It is very important that people who have TB disease finish the medicine, taking the drugs exactly as prescribed. If they stop taking the drugs too soon, they can become sick again; if they do not take the drugs correctly, the TB bacteria that are still alive may become resistant to those drugs. TB that is resistant to drugs is harder and more expensive to treat.
More: Treatment for TB Disease
Treatment Completion
Treatment completion is determined by the number of doses ingested over a given period of time. Although basic TB regimens are broadly applicable, there are modifications that should be made under special circumstances (such as people with HIV infection, drug resistance, pregnancy, or treatment of children). | Disease_Control_Prevention | Latent TB Infection |
15,216 | What is (are) Tuberculosis (TB) ? | The Division of Tuberculosis Elimination (DTBE) Laboratory Branch (LB) provides services for the following tests on mycobacterial cultures. Any local health department, licensed physician's office, licensed laboratory or licensed health care facility may submit cultures for testing but they must be routed through either their state health department or other authorized facility.
Genotyping
State or local TB control programs
A genotyping laboratory, in Michigan is under contract with CDC to provide genotyping services to TB programs in the United States. Three genotyping methods to identify TB strains:
- Spoligotyping
- Mycobacterial interspersed repetitive unit (MIRU) analysis
- IS6110-based restriction fragment length polymorphism (RFLP) analysis
For more information, view the Guide to the Application of Genotyping to Tuberculosis Prevention and Control.
DTBE epidemiologic investigations and surveillance activities
- The LB provides support for DTBE epidemiologic investigations and surveillance activities. TB genotyping results, when combined with epidemiologic data, help to distinguish TB patients who are involved in the same chain of recent transmission.
Drug susceptibility testing
The LB performs drug susceptibility testing for selected Mycobacterium species referred from state or other authorized health facilities. Cultures of mycobacteria are tested by the indirect proportion method with antituberculosis drugs incorporated into 7H10 agar plates.
Additional Resources | Disease_Control_Prevention | DTBE) Laboratory Branch |
15,217 | what research is being done for Tuberculosis (TB) ? | TB Epidemiologic Studies Consortium
The TB Epidemiologic Studies Consortium (TBESC) was established to strengthen, focus, and coordinate tuberculosis (TB) research. The TBESC is designed to build the scientific research capacities of state and metropolitan TB control programs, participating laboratories, academic institutions, hospitals, and both non- and for-profit organizations.
TB Trials Consortium
The TB Trials Consortium (TBTC) is a collaboration of North American and international clinical investigators whose mission is to conduct programmatically relevant research concerning the diagnosis, clinical management, and prevention of TB infection and disease.
Behavioral and Social Science Research
Behavioral and social science research has the potential to make a tremendous impact on TB elimination efforts. This research is needed to 1) understand how behaviors of both patients and providers affect TB-related care seeking, diagnosis, treatment success, and prevention; and 2) understand how other social, cultural, and environmental influences affect health seeking and treatment outcomes related to TB. | Disease_Control_Prevention | Behavioral and Social Science Research
Behavioral and social science |
15,218 | What is (are) Parasites - Toxocariasis (also known as Roundworm Infection) ? | Frequently Asked Questions (FAQs)
Fact Sheets | Disease_Control_Prevention | Frequently Asked Questions |
15,219 | Who is at risk for Parasites - Toxocariasis (also known as Roundworm Infection)? ? | Infected dogs and cats shed Toxocara eggs in their feces into the environment. Once in the environment, it takes 2 to 4 weeks for Toxocara larvae to develop and for the eggs to become infectious. Humans or other animals can be infected by accidentally ingesting Toxocara eggs. For example, humans can become infected if they work with dirt and accidentally ingest dirt containing Toxocara eggs. Although rare, people can be infected by eating undercooked or raw meat from an infected animal such as a lamb or rabbit. Because dogs and cats are frequently found where people live, there may be large numbers of infected eggs in the environment. Once in the body, the Toxocara eggs hatch and roundworm larvae can travel in the bloodstream to different parts of the body, including the liver, heart, lungs, brain, muscles, or eyes. Most infected people do not have any symptoms. However, in some people, the Toxocara larvae can cause damage to these tissues and organs. The symptoms of toxocariasis, the disease caused by these migrating larvae, include fever, coughing, inflammation of the liver, or eye problems.
A U.S. study in 1996 showed that 30% of dogs younger than 6 months deposit Toxocara eggs in their feces; other studies have shown that almost all puppies are born already infected with Toxocara canis. Research also suggests that 25% of all cats are infected with Toxocara cati. Infection rates are higher for dogs and cats that are left outside for more time and allowed to eat other animals. In humans, it has been found that almost 14% of the U.S. population has been infected with Toxocara. Globally, toxocariasis is found in many countries, and prevalence rates can reach as high as 40% or more in parts of the world. There are several factors that have been associated with higher rates of infection with Toxocara. People are more likely to be infected with Toxocara if they own a dog. Children and adolescents under the age of 20 are more likely to test positive for Toxocara infection. This may be because children are more likely to eat dirt and play in outdoor environments, such as sandboxes, where dog and cat feces can be found. This infection is more common in people living in poverty. Geographic location plays a role as well, because Toxocara is more prevalent in hot, humid regions where eggs are kept viable in the soil. | Disease_Control_Prevention | dogs and cats |
15,220 | How to diagnose Parasites - Toxocariasis (also known as Roundworm Infection) ? | If you think you or your child may have toxocariasis, you should see your health care provider to discuss the possibility of infection and, if necessary, to be examined. Toxocariasis can be difficult to diagnose because the symptoms of toxocariasis are similar to the symptoms of other infections. A blood test is available that looks for evidence of infection with Toxocara larvae. In addition to the blood test, diagnosis of toxocariasis includes identifying the presence of typical clinical signs of VT or OT and a history of exposure to cats and dogs. | Disease_Control_Prevention | blood test |
15,221 | What are the treatments for Parasites - Toxocariasis (also known as Roundworm Infection) ? | Visceral toxocariasis can be treated with antiparasitic drugs such as albendazole or mebendazole. Treatment of ocular toxocariasis is more difficult and usually consists of measures to prevent progressive damage to the eye.
More on: Resources For Health Professionals: Treatment | Disease_Control_Prevention | albendazole or mebendazole |
15,222 | How to prevent Parasites - Toxocariasis (also known as Roundworm Infection) ? | Controlling Toxocara infection in dogs and cats will reduce the number of infectious eggs in the environment and reduce the risk of infection for people. Have your veterinarian treat your dogs and cats, especially young animals, regularly for worms. This is especially important if your pets spend time outdoors and may become infected again.
There are several things that you can do around your home to make you and your pets safer:
- Clean your pet’s living area at least once a week. Feces should be either buried or bagged and disposed of in the trash. Wash your hands after handling pet waste.
- Do not allow children to play in areas that are soiled with pet or other animal feces and cover sandboxes when not in use to make sure that animals do not get inside and contaminate them.
- Wash your hands with soap and warm water after playing with your pets or other animals, after outdoor activities, and before handling food.
- Teach children the importance of washing hands to prevent infection.
- Teach children that it is dangerous to eat dirt or soil.
More on: Handwashing
Toxocara eggs have a strong protective layer which makes the eggs able to survive in the environment for months or even years under the right conditions. Many common disinfectants are not effective against Toxocara eggs but extreme heat has been shown to kill the eggs. Prompt removal of animal feces can help prevent infection since the eggs require 2 to 4 weeks to become infective once they are out of the animal. | Disease_Control_Prevention | Prompt removal of animal feces |
15,223 | What is (are) Parasites - Schistosomiasis ? | Schistosomiasis, also known as bilharzia, is a disease caused by parasitic worms. Infection with Schistosoma mansoni, S. haematobium, and S. japonicum causes illness in humans; less commonly, S. mekongi and S. intercalatum can cause disease. Although the worms that cause schistosomiasis are not found in the United States, more than 200 million people are infected worldwide. | Disease_Control_Prevention | bilharzia, is a disease caused by parasitic worms |
15,224 | Who is at risk for Parasites - Schistosomiasis? ? | Schistosomiasis is an important cause of disease in many parts of the world, most commonly in places with poor sanitation. School-age children who live in these areas are often most at risk because they tend to spend time swimming or bathing in water containing infectious cercariae.
If you live in, or travel to, areas where schistosomiasis is found and are exposed to contaminated freshwater, you are at risk.
Areas where human schistosomiasis is found include:
- Schistosoma mansoni
- distributed throughout Africa: There is risk of infection in freshwater in southern and sub-Saharan Africa–including the great lakes and rivers as well as smaller bodies of water. Transmission also occurs in the Nile River valley in Sudan and Egypt
- South America: including Brazil, Suriname, Venezuela
- Caribbean (risk is low): Dominican Republic, Guadeloupe, Martinique, and Saint Lucia.
- S. haematobium
- distributed throughout Africa: There is risk of infection in freshwater in southern and sub-Saharan Africa–including the great lakes and rivers as well as smaller bodies of water. Transmission also occurs in the Nile River valley in Egypt and the Mahgreb region of North Africa.
- found in areas of the Middle East
- S. japonicum
- found in Indonesia and parts of China and Southeast Asia
- S. mekongi
- found in Cambodia and Laos
- S. intercalatum
- found in parts of Central and West Africa. | Disease_Control_Prevention | School-age children |
15,225 | How to diagnose Parasites - Schistosomiasis ? | Stool or urine samples can be examined microscopically for parasite eggs (stool for S. mansoni or S. japonicum eggs and urine for S. haematobium eggs). The eggs tend to be passed intermittently and in small amounts and may not be detected, so it may be necessary to perform a blood (serologic) test.
More on: Resources for Health Professionals: Diagnosis | Disease_Control_Prevention | Resources for Health Professionals |
15,226 | What are the treatments for Parasites - Schistosomiasis ? | Safe and effective medication is available for treatment of both urinary and intestinal schistosomiasis. Praziquantel, a prescription medication, is taken for 1-2 days to treat infections caused by all Schistosoma species.
More on: Resources for Health Professionals: Treatment | Disease_Control_Prevention | both urinary and intestinal schistosomiasis |
15,227 | How to prevent Parasites - Schistosomiasis ? | Prevention
No vaccine is available.
The best way to prevent schistosomiasis is to take the following steps if you are visiting or live in an area where schistosomiasis is transmitted:
- Avoid swimming or wading in freshwater when you are in countries in which schistosomiasis occurs. Swimming in the ocean and in chlorinated swimming pools is safe.
- Drink safe water. Although schistosomiasis is not transmitted by swallowing contaminated water, if your mouth or lips come in contact with water containing the parasites, you could become infected. Because water coming directly from canals, lakes, rivers, streams, or springs may be contaminated with a variety of infectious organisms, you should either bring your water to a rolling boil for 1 minute or filter water before drinking it. Bring your water to a rolling boil for at least 1 minute will kill any harmful parasites, bacteria, or viruses present. Iodine treatment alone WILL NOT GUARANTEE that water is safe and free of all parasites.
- Water used for bathing should be brought to a rolling boil for 1 minute to kill any cercariae, and then cooled before bathing to avoid scalding. Water held in a storage tank for at least 1 - 2 days should be safe for bathing.
- Vigorous towel drying after an accidental, very brief water exposure may help to prevent the Schistosoma parasite from penetrating the skin. However, do not rely on vigorous towel drying alone to prevent schistosomiasis.
Those who have had contact with potentially contaminated water overseas should see their health care provider after returning from travel to discuss testing.
More on: Schistosomiasis in Travelers
Control
In countries where schistosomiasis causes significant disease, control efforts usually focus on:
- reducing the number of infections in people and/or
- eliminating the snails that are required to maintain the parasite’s life cycle.
For all species that cause schistosomiasis, improved sanitation could reduce or eliminate transmission of this disease. In some areas with lower transmission levels, elimination of schistosomiasis is considered a "winnable battle" by public health officials.
Control measures can include mass drug treatment of entire communities and targeted treatment of school-age children. Some of the problems with control of schistosomiasis include:
- Chemicals used to eliminate snails in freshwater sources may harm other species of animals in the water and, if treatment is not sustained, the snails may return to those sites afterwards.
- For certain species of the parasite, such as S. japonicum, animals such as cows or water buffalo can also be infected. Runoff from pastures (if the cows are infected) can contaminate freshwater sources. | Disease_Control_Prevention | Vigorous towel drying |
15,228 | What is (are) Parasites - Toxoplasmosis (Toxoplasma infection) ? | A single-celled parasite called Toxoplasma gondii causes a disease known as toxoplasmosis. While the parasite is found throughout the world, more than 60 million people in the United States may be infected with the Toxoplasma parasite. Of those who are infected, very few have symptoms because a healthy person’s immune system usually keeps the parasite from causing illness. However, pregnant women and individuals who have compromised immune systems should be cautious; for them, a Toxoplasma infection could cause serious health problems. | Disease_Control_Prevention | single-celled parasite called Toxoplasma gondii |
15,229 | Who is at risk for Parasites - Toxoplasmosis (Toxoplasma infection)? ? | Toxoplasmosis is caused by the protozoan parasite Toxoplasma gondii. In the United States it is estimated that 22.5% of the population 12 years and older have been infected with Toxoplasma. In various places throughout the world, it has been shown that up to 95% of some populations have been infected with Toxoplasma. Infection is often highest in areas of the world that have hot, humid climates and lower altitudes.
Toxoplasmosis is not passed from person-to-person, except in instances of mother-to-child (congenital) transmission and blood transfusion or organ transplantation. People typically become infected by three principal routes of transmission.
Foodborne transmission
The tissue form of the parasite (a microscopic cyst consisting of bradyzoites) can be transmitted to humans by food. People become infected by:
- Eating undercooked, contaminated meat (especially pork, lamb, and venison)
- Accidental ingestion of undercooked, contaminated meat after handling it and not washing hands thoroughly (Toxoplasma cannot be absorbed through intact skin)
- Eating food that was contaminated by knives, utensils, cutting boards, or other foods that had contact with raw, contaminated meat
Animal-to-human (zoonotic) transmission
Cats play an important role in the spread of toxoplasmosis. They become infected by eating infected rodents, birds, or other small animals. The parasite is then passed in the cat's feces in an oocyst form, which is microscopic.
Kittens and cats can shed millions of oocysts in their feces for as long as 3 weeks after infection. Mature cats are less likely to shed Toxoplasma if they have been previously infected. A Toxoplasma-infected cat that is shedding the parasite in its feces contaminates the litter box. If the cat is allowed outside, it can contaminate the soil or water in the environment as well.
People can accidentally swallow the oocyst form of the parasite. People can be infected by:
- Accidental ingestion of oocysts after cleaning a cat's litter box when the cat has shed Toxoplasma in its feces
- Accidental ingestion of oocysts after touching or ingesting anything that has come into contact with a cat's feces that contain Toxoplasma
- Accidental ingestion of oocysts in contaminated soil (e.g., not washing hands after gardening or eating unwashed fruits or vegetables from a garden)
- Drinking water contaminated with the Toxoplasma parasite
Mother-to-child (congenital) transmission
A woman who is newly infected with Toxoplasma during pregnancy can pass the infection to her unborn child (congenital infection). The woman may not have symptoms, but there can be severe consequences for the unborn child, such as diseases of the nervous system and eyes.
Rare instances of transmission
Organ transplant recipients can become infected by receiving an organ from a Toxoplasma-positive donor. Rarely, people can also become infected by receiving infected blood via transfusion. Laboratory workers who handle infected blood can also acquire infection through accidental inoculation. | Disease_Control_Prevention | unborn child |
15,230 | How to diagnose Parasites - Toxoplasmosis (Toxoplasma infection) ? | The diagnosis of toxoplasmosis is typically made by serologic testing. A test that measures immunoglobulin G (IgG) is used to determine if a person has been infected. If it is necessary to try to estimate the time of infection, which is of particular importance for pregnant women, a test which measures immunoglobulin M (IgM) is also used along with other tests such as an avidity test.
Diagnosis can be made by direct observation of the parasite in stained tissue sections, cerebrospinal fluid (CSF), or other biopsy material. These techniques are used less frequently because of the difficulty of obtaining these specimens.
Parasites can also be isolated from blood or other body fluids (for example, CSF) but this process can be difficult and requires considerable time.
Molecular techniques that can detect the parasite's DNA in the amniotic fluid can be useful in cases of possible mother-to-child (congenital) transmission.
Ocular disease is diagnosed based on the appearance of the lesions in the eye, symptoms, course of disease, and often serologic testing. | Disease_Control_Prevention | serologic testing |
15,231 | What are the treatments for Parasites - Toxoplasmosis (Toxoplasma infection) ? | Healthy people (nonpregnant)
Most healthy people recover from toxoplasmosis without treatment. Persons who are ill can be treated with a combination of drugs such as pyrimethamine and sulfadiazine, plus folinic acid.
Pregnant women, newborns, and infants
Pregnant women, newborns, and infants can be treated, although the parasite is not eliminated completely. The parasites can remain within tissue cells in a less active phase; their location makes it difficult for the medication to completely eliminate them.
Persons with ocular disease
Persons with ocular toxoplasmosis are sometimes prescribed medicine to treat active disease by their ophthalmologist. Whether or not medication is recommended depends on the size of the eye lesion, the location, and the characteristics of the lesion (acute active, versus chronic not progressing).
Persons with compromised immune systems
Persons with compromised immune systems need to be treated until they have improvement in their condition. For AIDS patients, continuation of medication for the rest of their lives may be necessary, or for as long as they are immunosuppressed.
More on: Resources for Health Professionals: Treatment | Disease_Control_Prevention | Healthy people (nonpregnant |
15,232 | How to prevent Parasites - Toxoplasmosis (Toxoplasma infection) ? | People who are healthy should follow the guidelines below to reduce risk of toxoplasmosis. If you have a weakened immune system, please see guidelines for Immunocompromised Persons.
Reduce Risk from Food
To prevent risk of toxoplasmosis and other infections from food:
- Freeze meat for several days at sub-zero (0° F) temperatures before cooking to greatly reduce chance of infection.
- Peel or wash fruits and vegetables thoroughly before eating.
- Wash cutting boards, dishes, counters, utensils, and hands with hot soapy water after contact with raw meat, poultry, seafood, or unwashed fruits or vegetables.
More on: Handwashing
The U.S. Government and the meat industry continue their efforts to reduce T. gondii in meat.
Reduce Risk from the Environment
To prevent risk of toxoplasmosis from the environment:
- Avoid drinking untreated drinking water.
- Wear gloves when gardening and during any contact with soil or sand because it might be contaminated with cat feces that contain Toxoplasma. Wash hands with soap and warm water after gardening or contact with soil or sand.
- Teach children the importance of washing hands to prevent infection.
- Keep outdoor sandboxes covered.
- Feed cats only canned or dried commercial food or well-cooked table food, not raw or undercooked meats.
- Change the litter box daily if you own a cat. The Toxoplasma parasite does not become infectious until 1 to 5 days after it is shed in a cat's feces. If you are pregnant or immunocompromised:
- Avoid changing cat litter if possible. If no one else can perform the task, wear disposable gloves and wash your hands with soap and warm water afterwards.
- Keep cats indoors.
- Do not adopt or handle stray cats, especially kittens. Do not get a new cat while you are pregnant. | Disease_Control_Prevention | washing hands |
15,233 | What is (are) Parasites - Leishmaniasis ? | Leishmaniasis is a parasitic disease that is found in parts of the tropics, subtropics, and southern Europe. Leishmaniasis is caused by infection with Leishmania parasites, which are spread by the bite of infected sand flies. There are several different forms of leishmaniasis in people. The most common forms are cutaneous leishmaniasis, which causes skin sores, and visceral leishmaniasis, which affects several internal organs (usually spleen, liver, and bone marrow). | Disease_Control_Prevention | a parasitic disease |
15,234 | Who is at risk for Parasites - Leishmaniasis? ? | Leishmaniasis is found in people in focal areas of more than 90 countries in the tropics, subtropics, and southern Europe. The ecologic settings range from rain forests to deserts. Leishmaniasis usually is more common in rural than in urban areas, but it is found in the outskirts of some cities. Climate and other environmental changes have the potential to expand the geographic range of the sand fly vectors and the areas in the world where leishmaniasis is found.
Leishmaniasis is found on every continent except Australia and Antarctica.
- In the Old World (the Eastern Hemisphere), leishmaniasis is found in some parts of Asia, the Middle East, Africa (particularly in the tropical region and North Africa, with some cases elsewhere), and southern Europe. It is not found in Australia or the Pacific islands.
- In the New World (the Western Hemisphere), it is found in some parts of Mexico, Central America, and South America. It is not found in Chile or Uruguay. Occasional cases of cutaneous leishmaniasis have been acquired in Texas and Oklahoma.
The number of new cases per year is not known with certainty. For cutaneous leishmaniasis, estimates of the number of cases range from approximately 0.7 million (700,000) to 1.2 million (1,200,000). For visceral leishmaniasis, estimates of the number of cases range from approximately 0.2 million (200,000) to 0.4 million (400,000). The cases of leishmaniasis evaluated in the United States reflect travel and immigration patterns. For example, many of the cases of cutaneous leishmaniasis in U.S. civilian travelers have been acquired in common tourist destinations in Latin America, such as in Costa Rica.
Overall, infection in people is caused by more than 20 species (types) of Leishmania parasites, which are spread by about 30 species of phlebotomine sand flies; particular species of the parasite are spread by particular sand flies. The sand fly vectors generally are the most active during twilight, evening, and night-time hours (from dusk to dawn).
In many geographic areas where leishmaniasis is found in people, infected people are not needed to maintain the transmission cycle of the parasite in nature; infected animals (such as rodents or dogs), along with sand flies, maintain the cycle. However, in some parts of the world, infected people are needed to maintain the cycle; this type of transmission (human—sand fly—human) is called anthroponotic. In areas with anthroponotic transmission, effective treatment of individual patients can help control the spread of the parasite. | Disease_Control_Prevention | civilian travelers |
15,235 | How to diagnose Parasites - Leishmaniasis ? | Various laboratory methods can be used to diagnose leishmaniasis—to detect the parasite as well as to identify the Leishmania species (type). Some of the methods are available only in reference laboratories. In the United States, CDC staff can assist with the testing for leishmaniasis.
Tissue specimens—such as from skin sores (for cutaneous leishmaniasis) or from bone marrow (for visceral leishmaniasis)—can be examined for the parasite under a microscope, in special cultures, and in other ways. Blood tests that detect antibody (an immune response) to the parasite can be helpful for cases of visceral leishmaniasis; tests to look for the parasite itself usually also are done.
More on: Resources for Health Professionals: Diagnosis | Disease_Control_Prevention | Various laboratory methods |
15,236 | What are the treatments for Parasites - Leishmaniasis ? | Before considering treatment, the first step is to make sure the diagnosis is correct.
Treatment decisions should be individualized. Health care providers may consult CDC staff about the relative merits of various approaches. Examples of factors to consider include the form of leishmaniasis, the Leishmania species that caused it, the potential severity of the case, and the patient's underlying health.
The skin sores of cutaneous leishmaniasis usually heal on their own, even without treatment. But this can take months or even years, and the sores can leave ugly scars. Another potential concern applies to some (not all) types of the parasite found in parts of Latin America: certain types might spread from the skin and cause sores in the mucous membranes of the nose (most common location), mouth, or throat (mucosal leishmaniasis). Mucosal leishmaniasis might not be noticed until years after the original sores healed. The best way to prevent mucosal leishmaniasis is to ensure adequate treatment of the cutaneous infection.
If not treated, severe (advanced) cases of visceral leishmaniasis typically are fatal.
More on: Resources for Health Professionals: Treatment | Disease_Control_Prevention | Treatment decisions should be individualized |
15,237 | How to prevent Parasites - Leishmaniasis ? | No vaccines or drugs to prevent infection are available. The best way for travelers to prevent infection is to protect themselves from sand fly bites. To decrease the risk of being bitten, follow these preventive measures:
Avoid outdoor activities, especially from dusk to dawn, when sand flies generally are the most active.
When outdoors (or in unprotected quarters):
- Minimize the amount of exposed (uncovered) skin. To the extent that is tolerable in the climate, wear long-sleeved shirts, long pants, and socks; and tuck your shirt into your pants. (See below about wearing insecticide-treated clothing.)
- Apply insect repellent to exposed skin and under the ends of sleeves and pant legs. Follow the instructions on the label of the repellent. The most effective repellents generally are those that contain the chemical DEET (N,N-diethylmetatoluamide).
When indoors:
- Stay in well-screened or air-conditioned areas.
- Keep in mind that sand flies are much smaller than mosquitoes and therefore can get through smaller holes.
- Spray living/sleeping areas with an insecticide to kill insects.
- If you are not sleeping in a well-screened or air-conditioned area, use a bed net and tuck it under your mattress. If possible, use a bed net that has been soaked in or sprayed with a pyrethroid-containing insecticide. The same treatment can be applied to screens, curtains, sheets, and clothing (clothing should be retreated after five washings).
More on: Insect Bite Prevention | Disease_Control_Prevention | protect themselves from sand fly bites |
15,238 | Who is at risk for Marburg hemorrhagic fever (Marburg HF)? ? | It is unknown how Marburg virus first transmits from its animal host to humans; however, for the 2 cases in tourists visiting Uganda in 2008, unprotected contact with infected bat feces or aerosols are the most likely routes of infection.
After this initial crossover of virus from host animal to humans, transmission occurs through person-to-person contact. This may happen in several ways: direct contact to droplets of body fluids from infected persons, or contact with equipment and other objects contaminated with infectious blood or tissues.
In previous outbreaks, persons who have handled infected non-human primates or have come in direct contact with their fluids or cell cultures have become infected. Spread of the virus between humans has occurred in close environments and direct contacts. A common example is through caregivers in the home or in a hospital (nosocomial transmission). | Disease_Control_Prevention | tourists visiting Uganda |
15,239 | What are the symptoms of Marburg hemorrhagic fever (Marburg HF) ? | After an incubation period of 5-10 days, symptom onset is sudden and marked by fever, chills, headache, and myalgia. Around the fifth day after the onset of symptoms, a maculopapular rash, most prominent on the trunk (chest, back, stomach), may occur. Nausea, vomiting, chest pain, a sore throat, abdominal pain, and diarrhea may then appear. Symptoms become increasingly severe and can include jaundice, inflammation of the pancreas, severe weight loss, delirium, shock, liver failure, massive hemorrhaging, and multi-organ dysfunction.
Because many of the signs and symptoms of Marburg hemorrhagic fever are similar to those of other infectious diseases such as malaria or typhoid fever, clinical diagnosis of the disease can be difficult, especially if only a single case is involved.
The case-fatality rate for Marburg hemorrhagic fever is between 23-90%. For a complete listing of the case fatality rates for previous outbreaks, please see the History of Outbreaks table | Disease_Control_Prevention | similar to those of other infectious diseases |
15,240 | Who is at risk for Marburg hemorrhagic fever (Marburg HF)? ? | People who have close contact with African fruit bats, humans patients, or non-human primates infected with Marburg virus are at risk.
Historically, the people at highest risk include family members and hospital staff who care for patients infected with Marburg virus and have not used proper barrier nursing techniques. Particular occupations, such as veterinarians and laboratory or quarantine facility workers who handle non-human primates from Africa, may also be at increased risk of exposure to Marburg virus.
Exposure risk can be higher for travelers visiting endemic regions in Africa, including Uganda and other parts of central Africa, and have contact with fruit bats, or enter caves or mines inhabited by fruit bats. | Disease_Control_Prevention | People who have close contact with African fruit bats |
15,241 | How to diagnose Marburg hemorrhagic fever (Marburg HF) ? | Many of the signs and symptoms of Marburg hemorrhagic fever are similar to those of other more frequent infectious diseases, such as malaria or typhoid fever, making diagnosis of the disease difficult. This is especially true if only a single case is involved.
However, if a person has the early symptoms of Marburg HF and there is reason to believe that Marburg HF should be considered, the patient should be isolated and public health professionals notified. Samples from the patient can then be collected and tested to confirm infection.
Antigen-capture enzyme-linked immunosorbent assay (ELISA) testing, polymerase chain reaction (PCR), and IgM-capture ELISA can be used to confirm a case of Marburg HF within a few days of symptom onset. Virus isolation may also be performed but should only be done in a high containment laboratory with good laboratory practices. The IgG-capture ELISA is appropriate for testing persons later in the course of disease or after recovery. In deceased patients, immunohistochemistry, virus isolation, or PCR of blood or tissue specimens may be used to diagnose Marburg HF retrospectively. | Disease_Control_Prevention | virus isolation, or PCR of blood or tissue specimens |
15,242 | What are the treatments for Marburg hemorrhagic fever (Marburg HF) ? | There is no specific treatment for Marburg hemorrhagic fever. Supportive hospital therapy should be utilized, which includes balancing the patient's fluids and electrolytes, maintaining oxygen status and blood pressure, replacing lost blood and clotting factors, and treatment for any complicating infections.
Experimental treatments are validated in non-human primates models, but have never been tried in humans. | Disease_Control_Prevention | balancing the patient's fluids and electrolytes |
15,243 | How to prevent Marburg hemorrhagic fever (Marburg HF) ? | Preventive measures against Marburg virus infection are not well defined, as transmission from wildlife to humans remains an area of ongoing research. However, avoiding fruit bats, and sick non-human primates in central Africa, is one way to protect against infection.
Measures for prevention of secondary, or person-to-person, transmission are similar to those used for other hemorrhagic fevers. If a patient is either suspected or confirmed to have Marburg hemorrhagic fever, barrier nursing techniques should be used to prevent direct physical contact with the patient. These precautions include wearing of protective gowns, gloves, and masks; placing the infected individual in strict isolation; and sterilization or proper disposal of needles, equipment, and patient excretions.
In conjunction with the World Health Organization, CDC has developed practical, hospital-based guidelines, titled: Infection Control for Viral Haemorrhagic Fevers In the African Health Care Setting. The manual can help health-care facilities recognize cases and prevent further hospital-based disease transmission using locally available materials and few financial resources.
Marburg hemorrhagic fever is a very rare human disease. However, when it occurs, it has the potential to spread to other people, especially health care staff and family members who care for the patient. Therefore, increasing awareness in communities and among health-care providers of the clinical symptoms of patients with Marburg hemorrhagic fever is critical. Better awareness can lead to earlier and stronger precautions against the spread of Marburg virus in both family members and health-care providers. Improving the use of diagnostic tools is another priority. With modern means of transportation that give access even to remote areas, it is possible to obtain rapid testing of samples in disease control centers equipped with Biosafety Level 4 laboratories in order to confirm or rule out Marburg virus infection. | Disease_Control_Prevention | barrier nursing techniques |
15,244 | Who is at risk for Lujo Hemorrhagic Fever (LUHF)? ? | Like all arenaviruses, Lujo virus has a rodent host as its reservoir. Humans can contract LUHF through contact with an infected rodent. Contact can be direct or through inhalation of aerosolized Lujo virus from the urine or feces of infected rodents.
Person-to-person transmission of Lujo virus was observed in the small, nosocomial cluster of hemorrhagic disease which resulted in the discovery of the Lujo virus.
Transmission of arenaviruses, and Lujo virus in particular, is most likely the result of direct contact with the body fluids of an infected person, in the absence of infection control precautions. | Disease_Control_Prevention | Humans |
15,245 | What are the symptoms of Lujo Hemorrhagic Fever (LUHF) ? | The symptoms of Lujo hemorrhagic fever, as described in the five patients in the original cluster outbreak, resemble those of severe Lassa Fever. After an incubation period of 7 to 13 days, the clinical course started by a non-specific febrile illness accompanied by headache and muscle pain.
The disease increases in severity, with:
- a morbilliform rash of the face and trunk
- face and neck swelling
- pharyngitis (sore throat)
- diarrhea
Bleeding was not a prominent feature during the illness.
In the fatal cases (4/5 patients), a transient improvement was followed by:
- rapid deterioration with respiratory distress
- neurological signs and circulatory collapse
Death occurred 10 to 13 days after onset.
Low blood platelets, low white blood cell count (at the onset, rising later on) and elevated liver function values were present in all patients.
Since Arenaviruses may enter the fetus through infection of the mother, and anectodal evidence suggests that infected pregnant women may suffer miscarriages, it is reasonable to assume that both infection of the fetus and miscarriage may be associated with Lujo infection in the mother. | Disease_Control_Prevention | resemble those of severe Lassa Fever |
15,246 | Who is at risk for Lujo Hemorrhagic Fever (LUHF)? ? | Lujo hemorrhagic fever (LUHF) occurs in southern Africa. The initial case was certainly infected in Zambia.
Field workers
Field workers are at greatest risk because of increased human contact with the reservoir rodent population. Sexual partners of field workers may be at greater risk as well. In addition to nosocomial infection in healthcare workers already described, laboratory infections have been frequently described with Arenaviruses and Lujo virus can certainly be transmitted to laboratory workers during manipulation of the virus, especially during experimental infections of rodents. | Disease_Control_Prevention | Field workers
Field workers |
15,247 | How to diagnose Lujo Hemorrhagic Fever (LUHF) ? | During the acute febrile phase, Lujo virus was isolated from blood from days 2 to 13 after onset. Virus was also isolated from liver tissue obtained post-mortem. A subsequent complete genomic analysis of Lujo virus facilitated the development of specific molecular detection (RT-PCR) assays.
Serologic diagnosis of Lujo hemorrhagic fever can be made by indirect immunofluorescent assay and ELISA. However, individuals from endemic areas displaying fever, rash, pharyngitis, accompanied by laboratory findings of low platelet counts and elevated liver enzymes, should be suspected of having a hemorrhagic fever virus infection. Clinical specimens should be tested using specific assays. | Disease_Control_Prevention | indirect immunofluorescent assay and ELISA |
15,248 | What are the treatments for Lujo Hemorrhagic Fever (LUHF) ? | Supportive therapy is important in Lujo hemorrhagic fever. This includes:
- maintenance of hydration
- management of shock
- sedation
- pain relief
- usual precautions for patients with bleeding disorders
- transfusions (when necessary)
Treatment of arenavirus hemorrhagic fevers with convalescent plasma therapy reduces mortality significantly and anectodal evidence from the only surviving Lujo patient shows that the antiviral drug ribavirin may hold promise in the treatment of LUHF. Ribavirin has been considered for preventing development of disease in people exposed to other arenaviruses.
Recovery
The precise mortality of LUHF is unknown, but 4 of 5 described cases were fatal.
Patients who have suffered from other arenaviruses may excrete virus in urine or semen for weeks after recovery. For this reason, these fluids should be monitored for infectivity, since convalescent patients have the potential to infect others (particularly sexual partners) via these fluids. | Disease_Control_Prevention | arenavirus hemorrhagic fevers with convalescent plasma therapy |
15,249 | How to prevent Lujo Hemorrhagic Fever (LUHF) ? | Although rodent control would be desirable, it will not be a successful strategy for preventing Lujo hemorrhagic fever cases caused by exposures outdoors.
As for other hemorrhagic fevers, full barrier nursing procedures should be implemented during management of suspected or confirmed LUHF cases (no infection occurred after their implementation in South Africa). | Disease_Control_Prevention | exposures outdoors |
15,250 | Who is at risk for Omsk Hemorrhagic Fever (OHF)? ? | Humans can become infected through tick bites or through contact with the blood, feces, or urine of an infected, sick, or dead animal – most commonly, rodents. Occupational and recreational activities such as hunting or trapping may increase human risk of infection.
Transmission may also occur with no direct tick or rodent exposure as OHFV appears to be extremely stable in different environments. It has been isolated from aquatic animals and water and there is even evidence that OHFV can be transmitted through the milk of infected goats or sheep to humans.
No human-to-human transmission of OHFV has been documented but infections due to lab contamination have been described. | Disease_Control_Prevention | Occupational and recreational activities such as hunting or trapping |
15,251 | What are the symptoms of Omsk Hemorrhagic Fever (OHF) ? | After an incubation period of 3-8 days, the symptoms of OHF begin suddenly with chills, fever, headache, and severe muscle pain with vomiting, gastrointestinal symptoms and bleeding problems occurring 3-4 days after initial symptom onset. Patients may experience abnormally low blood pressure and low platelet, red blood cell, and white blood cell counts.
After 1-2 weeks of symptoms, some patients recover without complication. However, the illness is biphasic for a subset of patients who experience a second wave of symptoms at the beginning of the third week. These symptoms include fever and encephalitis (inflammation of the brain).
The case fatality rate of OHF is low (0.5% to 3%). | Disease_Control_Prevention | chills, fever, headache, and severe muscle pain |
15,252 | Who is at risk for Omsk Hemorrhagic Fever (OHF)? ? | In areas where rodent reservoirs and tick species are prevalent, people with recreational or occupational exposure to rural or outdoor settings (e.g., hunters, campers, forest workers, farmers) are potentially at increased risk for OHF by contact with infected ticks and animals. Furthermore, those in Siberia who hunt and trap muskrats specifically are at higher risk for OHF.
Exposure may also occur in the laboratory environment. | Disease_Control_Prevention | Siberia who hunt and trap muskrats |
15,253 | How to diagnose Omsk Hemorrhagic Fever (OHF) ? | OHF virus may be detected in blood samples by virus isolation in cell culture or using molecular techniques such as PCR. Blood samples can also be tested for antibody presence using enzyme-linked immunosorbent seologic assay (ELISA). | Disease_Control_Prevention | enzyme-linked immunosorbent seologic assay |
15,254 | What are the treatments for Omsk Hemorrhagic Fever (OHF) ? | There is no specific treatment for OHF, but supportive therapy is important. Supportive therapy includes the maintenance of hydration and the usual precautions for patients with bleeding disorders.
Though rare, OHF can cause hearing loss, hair loss, and behavioral or psychological difficulties associated with neurological conditions and long term supportive case may be needed. | Disease_Control_Prevention | supportive therapy |
15,255 | How to prevent Omsk Hemorrhagic Fever (OHF) ? | There is no vaccine currently available for OHF, but vaccines for tick-borne encephalitis disease (TBE) have been shown to confer some immunity and may be used for high-risk groups.
Additionally, utilizing insect repellents and wearing protective clothing in areas where ticks are endemic is recommended. | Disease_Control_Prevention | wearing protective clothing |
15,256 | what are marine toxins? | Marine toxins are naturally occurring chemicals that can contaminate certain seafood. The seafood contaminated with these chemicals frequently looks, smells, and tastes normal. When humans eat such seafood, disease can result. | Disease_Control_Prevention | naturally occurring chemicals that can contaminate certain seafood |
15,257 | how can these diseases be diagnosed for Marine Toxins ? | Diagnosis of marine toxin poisoning is generally based on symptoms and a history of recently eating a particular kind of seafood. Laboratory testing for the specific toxin in patient samples is generally not necessary because this requires special techniques and equipment available in only specialized laboratories. If suspect, leftover fish or shellfish are available, they can be tested for the presence of the toxin more easily. Identification of the specific toxin is not usually necessary for treating patients because there is no specific treatment. | Disease_Control_Prevention | symptoms and a history of recently eating a particular kind of seafood |
15,258 | how can these diseases be treated for Marine Toxins ? | Other than supportive care there are few specific treatments for ciguatera poisoning, paralytic shellfish poisoning, neurotoxic shellfish poisoning, or amnesic shellfish poisoning. Antihistamines and epinephrine, however, may sometimes be useful in treating the symptoms of scombrotoxic fish poisoning. Intravenous mannitol has been suggested for the treatment of severe ciguatera poisoning. | Disease_Control_Prevention | Intravenous mannitol |
15,259 | how common are these diseases for Marine Toxins ? | Every year, approximately 30 cases of poisoning by marine toxins are reported in the United States. Because healthcare providers are not required to report these illnesses and because many milder cases are not diagnosed or reported, the actual number of poisonings may be much greater. Toxic seafood poisonings are more common in the summer than winter because dinoflagelates grow well in warmer seasons. It is estimated from cases with available data that one person dies every 4 years from toxic seafood poisonings. | Disease_Control_Prevention | more common |
15,260 | what can i do to prevent poisoning by marine toxins? | General guidelines for safe seafood consumption: | Disease_Control_Prevention | safe seafood consumption |
15,261 | what is the government doing about these diseases for Marine Toxins ? | Some health departments test shellfish harvested within their jurisdiction to monitor the level of dinoflagellate toxins and asses the risk for contamination. Based on the results of such testing, recreational and commercial seafood harvesting may be prohibited locally during periods of risk. State and federal regulatory agencies monitor reported cases of marine toxin poisoning, and health departments investigate possible outbreaks and devise control measures. The Centers for Disease Control and Prevention (CDC) provides support to investigators as needed. | Disease_Control_Prevention | monitor |
15,262 | what else can be done to prevent these diseases for Marine Toxins ? | It is important to notify public health departments about even one person with marine toxin poisoning. Public health departments can then investigate to determine if a restaurant, oyster bed, or fishing area has a problem. This prevents other illnesses. In any food poisoning occurrence, consumers should note foods eaten and freeze any uneaten portions in case they need to be tested. A commercial test has been developed in Hawaii to allow persons to test sport caught fish for ciguatoxins. | Disease_Control_Prevention | a restaurant, oyster bed, or fishing area has a problem |
15,263 | What is (are) Parasites - Loiasis ? | Loiasis is an infection caused by the parasitic worm Loa loa. | Disease_Control_Prevention | an infection caused by the parasitic worm Loa loa |
15,264 | Who is at risk for Parasites - Loiasis? ? | Loa loa parasites are found in West and Central Africa. Ten countries have areas where there are high rates of infection (i.e., where more than 40% of the people who live in that area report that they have had eye worm in the past). An estimated 14.4 million people live in these areas of high rates of infection. Another 15.2 live in areas where 20–40% of people report that they have had eye worm in the past.
More on: Where Loa Loa is Prevelant [WHO Map]
The people most at risk for loiasis are those who live in the certain rain forests in West and Central Africa. The deerflies that pass the parasite to humans usually bite during the day and are more common during the rainy season. They are attracted by the movement of people and by smoke from wood fires. Rubber plantations are areas where more deerflies may be found. The flies do not typically enter homes, but they might be attracted to homes that are well lit.
Travelers are more likely to become infected if they are in areas where they are bitten by deerflies for many months, though occasionally they get infected even if they are in an affected area for less than 30 days.
Your risk of infection depends on the number of bites received, the number of infected deerflies in the area you visit, and the length of your stay in the area. | Disease_Control_Prevention | those who live in the certain rain forests in West and Central Africa |
15,265 | How to diagnose Parasites - Loiasis ? | In people who have been bitten by the flies that carry Loa loa in areas where Loa loa is known to exist, the diagnosis can be made in the following ways:
- Identification of the adult worm by a microbiologist or pathologist after its removal from under the skin or eye
- Identification of an adult worm in the eye by a health care provider
- Identification of the microfilariae on a blood smear made from blood taken from the patient between 10AM and 2PM
- Identification of antibodies against L. loa on specialized blood test
Diagnosis of loiasis can be difficult, especially in light infections where there are very few microfilariae in the blood. The specialized blood test is not widely available in the United States. A positive antibody blood test in someone with no symptoms means only that the person was infected sometime in his/her life. It does not mean that the person still has living parasites in his/her body. | Disease_Control_Prevention | specialized blood test |
15,266 | What are the treatments for Parasites - Loiasis ? | Decisions about treatment of loiasis can be difficult and often require advice from an expert in infectious diseases or tropical medicine. Although surgical removal of adult worms moving under the skin or across the eye can be done to relieve anxiety, loiasis is not cured by surgery alone. There are two medications that can be used to treat the infection and manage the symptoms. The treatment of choice is diethylcarbamazine (DEC), which kills the microfilariae and adult worms. Albendazole is sometimes used in patients who are not cured with multiple DEC treatments. It is thought to kill adult worms. Certain people with heavy infections are at risk of brain inflammation when treated with DEC. This can cause coma or sometimes death. People with heavy infections need to be treated by experienced specialists. Sometimes, other medical conditions need to be addressed first in order to make it safer to use DEC. Sometimes treatment is not recommended.
More on: Resources for Health Professionals: Treatment | Disease_Control_Prevention | infectious diseases or tropical medicine |
15,267 | How to prevent Parasites - Loiasis ? | There are no programs to control or eliminate loiasis in affected areas. Your risk of infection may be less in areas where communities receive regular treatment for onchocerciasis or lymphatic filariasis.
There are no vaccines that protect you from loiasis. If you are going to be in an area with loiasis for a long period of time, diethylcarbamazine (DEC)—300mg taken once a week—can reduce your risk of infection. Avoiding areas where the deerflies are found, such as muddy, shaded areas along rivers or around wood fires, may also reduce your risk of infection. You may reduce your risk of bites by using insect repellants that contain DEET (N,N-Diethyl-meta-toluamide) and wearing long sleeves and long pants during the day, which is when deerflies bite. Treating your clothes with permethrin may also help. For a description of CDC's information for preventing insect bites, see CDC's Yellow Book.
More on: Insect Bite Prevention | Disease_Control_Prevention | There are no vaccines |
15,268 | Who is at risk for Nocardiosis? ? | The bacteria that cause nocardiosis are commonly found in soil and water.
You could become sick with nocardiosis if:
- You inhale (breathe in) the bacteria
- Bacteria gets into an open wound or cut
In rare cases, infection can occur during surgical procedures.
Fortunately, nocardiosis is not spread person to person, so being around someone who has the disease will not make you sick. | Disease_Control_Prevention | person to person |
15,269 | Who is at risk for Nocardiosis? ? | People with very weak immune (body defense) systems are at risk for getting nocardiosis.
Several diseases and circumstances can cause the immune system to be weak. These include:
- Diabetes
- Cancer
- HIV/AIDS
- Pulmonary alveolar proteinosis (an illness that causes the air sacs of the lungs to become plugged)
- Connective tissue disorder (a disease that affects the tissue that connects and supports different parts of the body)
- Alcoholism
- Having a bone marrow or solid organ transplant
- Taking high doses of drugs called corticosteroids
In the United States, it has been estimated that 500-1,000 new cases of nocardiosis infection occur every year. Approximately 60% of nocardiosis cases are associated with pre-existing immune compromise.
In addition, men have a greater risk of getting the infection than women; for every female who gets sick with nocardiosis, there are about 3 males who get the disease. | Disease_Control_Prevention | People with very weak immune (body defense) systems |
15,270 | What are the symptoms of Nocardiosis ? | The symptoms of nocardiosis vary depending on which part of your body is affected.
Nocardiosis infection most commonly occurs in the lung. If your lungs are infected, you can experience:
- Fever
- Weight loss
- Night sweats
- Cough
- Chest pain
- Pneumonia
When lung infections occur, the infection commonly spreads to the brain. If your central nervous system (brain and spinal cord) is infected, you can experience:
- Headache
- Weakness
- Confusion
- Seizures (sudden, abnormal electrical activity in the brain)
Skin infections can occur when open wounds or cuts come into contact with contaminated soil. If your skin is affected, you can experience:
- Ulcers
- Nodules sometimes draining and spreading along lymph nodes | Disease_Control_Prevention | vary depending on which part of your body is affected |
15,271 | What are the treatments for Nocardiosis ? | If you think you might be sick with nocardiosis, talk to your doctor.
He or she can help find out if you have the disease by performing tests that can identify the bacteria that causes nocardiosis.
Testing may involve taking tissue samples from the part of the body that is infected. Tissue samples may include the:
- Brain
- Skin
- Lungs (or other parts of the lower airways)
- Mucus from the lower airways | Disease_Control_Prevention | Brain
- Skin
- Lungs |
15,272 | What is (are) Parasites - Lice - Pubic "Crab" Lice ? | Also called crab lice or "crabs," pubic lice are parasitic insects found primarily in the pubic or genital area of humans. Pubic lice infestation is found worldwide and occurs in all races, ethnic groups, and levels of society. | Disease_Control_Prevention | parasitic insects |
15,273 | Who is at risk for Parasites - Lice - Pubic "Crab" Lice? ? | Pubic ("crab") lice infestation is found worldwide and occurs in all races and ethnic groups and in all levels of society. Pubic lice usually are spread through sexual contact and are most common in adults. Occasionally pubic lice may be spread by close personal contact or contact with articles such as clothing, bed linens, and towels that have been used by an infested person. Pubic lice found on the head or eyelashes of children may be an indication of sexual exposure or abuse.
Pubic lice do not transmit disease; however, secondary bacterial infection can occur from scratching of the skin. | Disease_Control_Prevention | children |
15,274 | How to diagnose Parasites - Lice - Pubic "Crab" Lice ? | Pubic lice are short and crab-like and appear very different from head and body lice. Pubic lice infestation is diagnosed by finding a “crab” louse or eggs on hair in the pubic region or, less commonly, elsewhere on the body (eyebrows, eyelashes, beard, mustache, armpit, perianal area, groin, trunk, scalp). Although pubic lice and nits can be large enough to be seen with the naked eye, a magnifying lens may be necessary to find lice or eggs. | Disease_Control_Prevention | magnifying lens |
15,275 | What are the treatments for Parasites - Lice - Pubic "Crab" Lice ? | A lice-killing lotion containing 1% permethrin or a mousse containing pyrethrins and piperonyl butoxide can be used to treat pubic ("crab") lice. These products are available over-the-counter without a prescription at a local drug store or pharmacy. These medications are safe and effective when used exactly according to the instructions in the package or on the label.
Lindane shampoo is a prescription medication that can kill lice and lice eggs. However, lindane is not recommended as a first-line therapy. Lindane can be toxic to the brain and other parts of the nervous system; its use should be restricted to patients who have failed treatment with or cannot tolerate other medications that pose less risk. Lindane should not be used to treat premature infants, persons with a seizure disorder, women who are pregnant or breast-feeding, persons who have very irritated skin or sores where the lindane will be applied, infants, children, the elderly, and persons who weigh less than 110 pounds.
Malathion* lotion 0.5% (Ovide*) is a prescription medication that can kill lice and some lice eggs; however, malathion lotion (Ovide*) currently has not been approved by the U.S. Food and Drug Administration (FDA) for treatment of pubic ("crab") lice.
Both topical and oral ivermectin have been used successfully to treat lice; however, only topical ivermectin lotion currently is approved by the U.S. Food and Drug Administration (FDA) for treatment of lice. Oral ivermectin is not FDA-approved for treatment of lice.
How to treat pubic lice infestations: (Warning: See special instructions for treatment of lice and nits on eyebrows or eyelashes. The lice medications described in this section should not be used near the eyes.)
- Wash the infested area; towel dry.
- Carefully follow the instructions in the package or on the label. Thoroughly saturate the pubic hair and other infested areas with lice medication. Leave medication on hair for the time recommended in the instructions. After waiting the recommended time, remove the medication by following carefully the instructions on the label or in the box.
- Following treatment, most nits will still be attached to hair shafts. Nits may be removed with fingernails or by using a fine-toothed comb.
- Put on clean underwear and clothing after treatment.
- To kill any lice or nits remaining on clothing, towels, or bedding, machine-wash and machine-dry those items that the infested person used during the 2–3 days before treatment. Use hot water (at least 130°F) and the hot dryer cycle.
- Items that cannot be laundered can be dry-cleaned or stored in a sealed plastic bag for 2 weeks.
- All sex partners from within the previous month should be informed that they are at risk for infestation and should be treated.
- Persons should avoid sexual contact with their sex partner(s) until both they and their partners have been successfully treated and reevaluated to rule out persistent infestation.
- Repeat treatment in 9–10 days if live lice are still found.
- Persons with pubic lice should be evaluated for other sexually transmitted diseases (STDs).
Special instructions for treatment of lice and nits found on eyebrows or eyelashes:
- If only a few live lice and nits are present, it may be possible to remove these with fingernails or a nit comb.
- If additional treatment is needed for lice or nits on the eyelashes, careful application of ophthalmic-grade petrolatum ointment (only available by prescription) to the eyelid margins 2–4 times a day for 10 days is effective. Regular petrolatum (e.g., Vaseline)* should not be used because it can irritate the eyes if applied.
*Use of trade names is for identification purposes only and does not imply endorsement by the Public Health Service or by the U.S. Department of Health and Human Services.
This information is not meant to be used for self-diagnosis or as a substitute for consultation with a health care provider. If you have any questions about the parasites described above or think that you may have a parasitic infection, consult a health care provider. | Disease_Control_Prevention | eyebrows or eyelashes |
15,276 | How to prevent Parasites - Lice - Pubic "Crab" Lice ? | Pubic ("crab") lice most commonly are spread directly from person to person by sexual contact. Pubic lice very rarely may be spread by clothing, bedding, or a toilet seat.
The following are steps that can be taken to help prevent and control the spread of pubic ("crab") lice:
- All sexual contacts of the infested person should be examined. All those who are infested should be treated.
- Sexual contact between the infested person(s)s and their sexual partner(s) should be avoided until all have been examined, treated as necessary, and reevaluated to rule out persistent infestation.
- Machine wash and dry clothing worn and bedding used by the infested person in the hot water (at least 130°F) laundry cycle and the high heat drying cycle. Clothing and items that are not washable can be dry-cleaned OR sealed in a plastic bag and stored for 2 weeks.
- Do not share clothing, bedding, and towels used by an infested person.
- Do not use fumigant sprays or fogs; they are not necessary to control pubic ("crab") lice and can be toxic if inhaled or absorbed through the skin.
Persons with pubic lice should be examined and treated for any other sexually transmitted diseases (STDs) that may be present. | Disease_Control_Prevention | OR sealed in a plastic bag and stored for 2 weeks |
15,277 | Who is at risk for Lymphocytic Choriomeningitis (LCM)? ? | LCMV infections can occur after exposure to fresh urine, droppings, saliva, or nesting materials from infected rodents. Transmission may also occur when these materials are directly introduced into broken skin, the nose, the eyes, or the mouth, or presumably, via the bite of an infected rodent. Person-to-person transmission has not been reported, with the exception of vertical transmission from infected mother to fetus, and rarely, through organ transplantation. | Disease_Control_Prevention | infected rodents |
15,278 | What are the symptoms of Lymphocytic Choriomeningitis (LCM) ? | LCMV is most commonly recognized as causing neurological disease, as its name implies, though infection without symptoms or mild febrile illnesses are more common clinical manifestations.
For infected persons who do become ill, onset of symptoms usually occurs 8-13 days after exposure to the virus as part of a biphasic febrile illness. This initial phase, which may last as long as a week, typically begins with any or all of the following symptoms: fever, malaise, lack of appetite, muscle aches, headache, nausea, and vomiting. Other symptoms appearing less frequently include sore throat, cough, joint pain, chest pain, testicular pain, and parotid (salivary gland) pain.
Following a few days of recovery, a second phase of illness may occur. Symptoms may consist of meningitis (fever, headache, stiff neck, etc.), encephalitis (drowsiness, confusion, sensory disturbances, and/or motor abnormalities, such as paralysis), or meningoencephalitis (inflammation of both the brain and meninges). LCMV has also been known to cause acute hydrocephalus (increased fluid on the brain), which often requires surgical shunting to relieve increased intracranial pressure. In rare instances, infection results in myelitis (inflammation of the spinal cord) and presents with symptoms such as muscle weakness, paralysis, or changes in body sensation. An association between LCMV infection and myocarditis (inflammation of the heart muscles) has been suggested.
Previous observations show that most patients who develop aseptic meningitis or encephalitis due to LCMV survive. No chronic infection has been described in humans, and after the acute phase of illness, the virus is cleared from the body. However, as in all infections of the central nervous system, particularly encephalitis, temporary or permanent neurological damage is possible. Nerve deafness and arthritis have been reported.
Women who become infected with LCMV during pregnancy may pass the infection on to the fetus. Infections occurring during the first trimester may result in fetal death and pregnancy termination, while in the second and third trimesters, birth defects can develop. Infants infected In utero can have many serious and permanent birth defects, including vision problems, mental retardation, and hydrocephaly (water on the brain). Pregnant women may recall a flu-like illness during pregnancy, or may not recall any illness.
LCM is usually not fatal. In general, mortality is less than 1%. | Disease_Control_Prevention | muscle weakness, paralysis, or changes in body sensation |
15,279 | Who is at risk for Lymphocytic Choriomeningitis (LCM)? ? | Individuals of all ages who come into contact with urine, feces, saliva, or blood of wild mice are potentially at risk for infection. Owners of pet mice or hamsters may be at risk for infection if these animals originate from colonies that were contaminated with LCMV, or if their animals are infected from other wild mice. Human fetuses are at risk of acquiring infection vertically from an infected mother.
Laboratory workers who work with the virus or handle infected animals are also at risk. However, this risk can be minimized by utilizing animals from sources that regularly test for the virus, wearing proper protective laboratory gear, and following appropriate safety precautions. | Disease_Control_Prevention | Owners of pet mice or hamsters |
15,280 | How to diagnose Lymphocytic Choriomeningitis (LCM) ? | During the first phase of the disease, the most common laboratory abnormalities are a low white blood cell count (leukopenia) and a low platelet count (thrombocytopenia). Liver enzymes in the serum may also be mildly elevated. After the onset of neurological disease during the second phase, an increase in protein levels, an increase in the number of white blood cells or a decrease in the glucose levels in the cerebrospinal fluid (CSF) is usually found.
Laboratory diagnosis is usually made by detecting IgM and IgG antibodies in the CSF and serum. Virus can be detected by PCR or virus isolation in the CSF at during the acute stage of illness. | Disease_Control_Prevention | detecting IgM and IgG antibodies |
15,281 | What are the treatments for Lymphocytic Choriomeningitis (LCM) ? | Aseptic meningitis, encephalitis, or meningoencephalitis requires hospitalization and supportive treatment based on severity. Anti-inflammatory drugs, such as corticosteroids, may be considered under specific circumstances. Although studies have shown that ribavirin, a drug used to treat several other viral diseases, is effective against LCMV in vitro, there is no established evidence to support its routine use for treatment of LCM in humans. | Disease_Control_Prevention | encephalitis, or meningoencephalitis |
15,282 | How to prevent Lymphocytic Choriomeningitis (LCM) ? | LCMV infection can be prevented by avoiding contact with wild mice and taking precautions when handling pet rodents (i.e. mice, hamsters, or guinea pigs).
Rarely, pet rodents may become infected with LCMV from wild rodents. Breeders, pet stores, and pet owners should take measures to prevent infestations of wild rodents. Pet rodents should not come into contact with wild rodents. If you have a pet rodent, wash your hands with soap and water (or waterless alcohol-based hand rubs when soap is not available and hands are not visibly soiled) after handling rodents or their cages and bedding.
If you have a rodent infestation in and around your home, take the following precautions to reduce the risk of LCMV infection:
- Seal up rodent entry holes or gaps with steel wool, lath metal, or caulk.
- Trap rats and mice by using an appropriate snap trap.
- Clean up rodent food sources and nesting sites and take precautions when cleaning rodent-infected areas:
- Use cross-ventilation when entering a previously unventilated enclosed room or dwelling prior to cleanup.
- Put on rubber, latex, vinyl or nitrile gloves.
- Do not stir up dust by vacuuming, sweeping, or any other means.
- Thoroughly wet contaminated areas with a bleach solution or household disinfectant.
- Hypochlorite (bleach) solution: Mix 1 and 1/2 cups of household bleach in 1 gallon of water.
- Once everything is wet, take up contaminated materials with damp towel and then mop or sponge the area with bleach solution or household disinfectant.
- Spray dead rodents with disinfectant and then double-bag along with all cleaning materials and throw bag out in an appropriate waste disposal system.
- Remove the gloves and thoroughly wash your hands with soap and water (or waterless alcohol-based hand rubs when soap is not available and hands are not visibly soiled).
The geographic distributions of the rodent hosts are widespread both domestically and abroad. However, infrequent recognition and diagnosis, and historic underreporting of LCM, have limited scientists' ability to estimate incidence rates and prevalence of disease among humans. Understanding the epidemiology of LCM and LCMV infections will help to further delineate risk factors for infection and develop effective preventive strategies. Increasing physician awareness will improve disease recognition and reporting, which may lead to better characterization of the natural history and the underlying immunopathological mechanisms of disease, and stimulate future therapeutic research and development. | Disease_Control_Prevention | develop effective preventive strategies |
15,283 | What is (are) Parasites - Lymphatic Filariasis ? | Frequently Asked Questions (FAQs)
Vector Information | Disease_Control_Prevention | Frequently Asked Questions |
15,284 | Who is at risk for Parasites - Lymphatic Filariasis? ? | There are three different filarial species that can cause lymphatic filariasis in humans. Most of the infections worldwide are caused by Wuchereria bancrofti. In Asia, the disease can also be caused by Brugia malayi and Brugia timori.
The infection spreads from person to person by mosquito bites. The adult worm lives in the human lymph vessels, mates, and produces millions of microscopic worms, also known as microfilariae. Microfilariae circulate in the person's blood and infect the mosquito when it bites a person who is infected. Microfilariae grow and develop in the mosquito. When the mosquito bites another person, the larval worms pass from the mosquito into the human skin, and travel to the lymph vessels. They grow into adult worms, a process that takes 6 months or more. An adult worm lives for about 5–7 years. The adult worms mate and release millions of microfilariae into the blood. People with microfilariae in their blood can serve as a source of infection to others.
A wide range of mosquitoes can transmit the parasite, depending on the geographic area. In Africa, the most common vector is Anopheles and in the Americas, it is Culex quinquefasciatus. Aedes and Mansonia can transmit the infection in the Pacific and in Asia.
Many mosquito bites over several months to years are needed to get lymphatic filariasis. People living for a long time in tropical or sub-tropical areas where the disease is common are at the greatest risk for infection. Short-term tourists have a very low risk.
Programs to eliminate lymphatic filariasis are under way in more than 50 countries. These programs are reducing transmission of the filarial parasites and decreasing the risk of infection for people living in or visiting these communities.
Geographic distribution
Lymphatic filariasis affects over 120 million people in 73 countries throughout the tropics and sub-tropics of Asia, Africa, the Western Pacific, and parts of the Caribbean and South America.
In the Americas, only four countries are currently known to be endemic: Haiti, the Dominican Republic, Guyana and Brazil.
In the United States, Charleston, South Carolina, was the last known place with lymphatic filariasis. The infection disappeared early in the 20th century. Currently, you cannot get infected in the U.S. | Disease_Control_Prevention | People living for a long time in tropical or sub-tropical areas |
15,285 | How to diagnose Parasites - Lymphatic Filariasis ? | The standard method for diagnosing active infection is the identification of microfilariae in a blood smear by microscopic examination. The microfilariae that cause lymphatic filariasis circulate in the blood at night (called nocturnal periodicity). Blood collection should be done at night to coincide with the appearance of the microfilariae, and a thick smear should be made and stained with Giemsa or hematoxylin and eosin. For increased sensitivity, concentration techniques can be used.
Serologic techniques provide an alternative to microscopic detection of microfilariae for the diagnosis of lymphatic filariasis. Patients with active filarial infection typically have elevated levels of antifilarial IgG4 in the blood and these can be detected using routine assays.
Because lymphedema may develop many years after infection, lab tests are most likely to be negative with these patients. | Disease_Control_Prevention | Serologic techniques |
15,286 | What are the treatments for Parasites - Lymphatic Filariasis ? | Patients currently infected with the parasite
Diethylcarbamazine (DEC) is the drug of choice in the United States. The drug kills the microfilaria and some of the adult worms. DEC has been used world-wide for more than 50 years. Because this infection is rare in the U.S., the drug is no longer approved by the Food and Drug Administration (FDA) and cannot be sold in the U.S. Physicians can obtain the medication from CDC after confirmed positive lab results. CDC gives the physicians the choice between 1 or 12-day treatment of DEC (6 mg/kg/day). One day treatment is generally as effective as the 12-day regimen. DEC is generally well tolerated. Side effects are in general limited and depend on the number of microfilariae in the blood. The most common side effects are dizziness, nausea, fever, headache, or pain in muscles or joints.
DEC should not be administered to patients who may also have onchocerciasis as DEC can worsen onchocercal eye disease. In patients with loiasis, DEC can cause serious adverse reactions, including encephalopathy and death. The risk and severity of the adverse reactions are related to Loa loa microfilarial density.
The drug ivermectin kills only the microfilariae, but not the adult worm; the adult worm is responsible for the pathology of lymphedema and hydrocele.
Some studies have shown adult worm killing with treatment with doxycycline (200mg/day for 4–6 weeks).
Patients with clinical symptoms
Lymphedema and elephantiasis are not indications for DEC treatment because most people with lymphedema are not actively infected with the filarial parasite.
To prevent the lymphedema from getting worse, patients should ask their physician for a referral to a lymphedema therapist so they can be informed about some basic principles of care such as hygiene, exercise and treatment of wounds.
Patients with hydrocele may have evidence of active infection, but typically do not improve clinically following treatment with DEC. The treatment for hydrocele is surgery.
More on: Resources for Health Professionals: Treatment | Disease_Control_Prevention | Lymphedema and elephantiasis |
15,287 | How to prevent Parasites - Lymphatic Filariasis ? | The best way to prevent lymphatic filariasis is to avoid mosquito bites. The mosquitoes that carry the microscopic worms usually bite between the hours of dusk and dawn. If you live in an area with lymphatic filariasis:
- at night
- sleep in an air-conditioned room or
- sleep under a mosquito net
- between dusk and dawn
- wear long sleeves and trousers and
- use mosquito repellent on exposed skin.
Another approach to prevention includes giving entire communities medicine that kills the microscopic worms -- and controlling mosquitoes. Annual mass treatment reduces the level of microfilariae in the blood and thus, diminishes transmission of infection. This is the basis of the global campaign to eliminate lymphatic filariasis.
Experts consider that lymphatic filariasis, a neglected tropical disease (NTD), can be eradicated and a global campaign to eliminate lymphatic filariasis as a public health problem is under way. The elimination strategy is based on annual treatment of whole communities with combinations of drugs that kill the microfilariae. As a result of the generous contributions of these drugs by the companies that make them, tens of millions of people are being treated each year. Since these drugs also reduce levels of infection with intestinal worms, benefits of treatment extend beyond lymphatic filariasis. Successful campaigns to eliminate lymphatic filariasis have taken place in China and other countries.
More on: Insect Bite Prevention | Disease_Control_Prevention | avoid mosquito bites |
15,288 | What is (are) Parasites - Hookworm ? | Hookworm is an intestinal parasite of humans. The larvae and adult worms live in the small intestine can cause intestinal disease. The two main species of hookworm infecting humans are Ancylostoma duodenale and Necator americanus. | Disease_Control_Prevention | an intestinal parasite |
15,289 | Who is at risk for Parasites - Hookworm? ? | Hookworm is a soil-transmitted helminth (STH) and is one of the most common roundworm of humans. Infection is caused by the nematode parasites Necator americanus and Ancylostoma duodenale. Hookworm infections often occur in areas where human feces are used as fertilizer or where defecation onto soil happens.
Geographic Distribution
The geographic distributions of the hookworm species that are intestinal parasites in human, Ancylostoma duodenale and Necator americanus, are worldwide in areas with warm, moist climates and are widely overlapping. Necator americanus was widespread in the Southeastern United States until the early 20th century. | Disease_Control_Prevention | Necator americanus and Ancylostoma duodenale |
15,290 | How to diagnose Parasites - Hookworm ? | The standard method for diagnosing the presence of hookworm is by identifying hookworm eggs in a stool sample using a microscope. Because eggs may be difficult to find in light infections, a concentration procedure is recommended. | Disease_Control_Prevention | by identifying hookworm eggs in a stool sample using a microscope |
15,291 | What are the treatments for Parasites - Hookworm ? | Anthelminthic medications (drugs that rid the body of parasitic worms), such as albendazole and mebendazole, are the drugs of choice for treatment of hookworm infections. Infections are generally treated for 1-3 days. The recommended medications are effective and appear to have few side effects. Iron supplements may also be prescribed if the infected person has anemia.
More on: Resources for Health Professionals: Treatment | Disease_Control_Prevention | Anthelminthic medications |
15,292 | How to prevent Parasites - Hookworm ? | The best way to avoid hookworm infection is not to walk barefoot in areas where hookworm is common and where there may be human fecal contamination of the soil. Also, avoid other skin contact with such soil and avoid ingesting it.
Infection can also be prevented by not defecating outdoors and by effective sewage disposal systems. | Disease_Control_Prevention | effective sewage disposal systems |
15,293 | How to prevent La Crosse Encephalitis ? | There is no vaccine against La Crosse encephalitis virus (LACV). Reducing exposure to mosquito bites is the best defense against getting infected with LACV or other mosquito-borne viruses. There are several approaches you and your family can use to prevent and control mosquito-borne diseases.
- Use repellent: When outdoors, use insect repellent containing DEET, picaridin, IR3535 or oil of lemon eucalyptus on exposed skin as well as on clothing (mosquitoes will bite through thin cloth).
- Permethrin is a repellent/insecticide that can be applied to clothing and will provide excellent protection through multiple washes. You can treat clothing yourself (always follow the directions on the package!) or purchase pre-treated clothing. For best protection it is still necessary to apply other repellent to exposed skin.
- Wear protective clothing: Wear long sleeves, pants and socks when weather permits.
- Avoid peak biting hours: Avoid outdoor activity or use protective measures when mosquitoes are active (Aedes triseriatus mosquitoes are most active during daytime—from dawn until dusk).
- Install and repair screens: Have secure, intact screens on windows and doors to keep mosquitoes out.
- Keep mosquitoes from laying eggs near you: Mosquitoes can lay eggs even in small amounts of standing water. While Aedes triseriatus prefers treeholes, it will also lay eggs in artificial containers. You can fill treeholes in/around your yard with soil. Get rid of mosquito breeding sites by emptying standing water from flower pots, buckets, barrels, and tires. Change the water in pet dishes and replace the water in bird baths weekly. Drill holes in tire swings so water drains out. Empty children's wading pools and store on their side after use. | Disease_Control_Prevention | emptying standing water from flower pots, buckets, barrels, and tires |
15,294 | How to prevent Varicella (Chickenpox) Vaccination ? | At a Glance
Vaccine-preventable disease levels are at or near record lows. Even though most infants and toddlers have received all recommended vaccines by age 2, many under-immunized children remain, leaving the potential for outbreaks of disease. Many adolescents and adults are under-immunized as well, missing opportunities to protect themselves against diseases such as Hepatitis B, influenza, and pneumococcal disease. CDC works closely with public health agencies and private partners to improve and sustain immunization coverage and to monitor the safety of vaccines so that this public health success story can be maintained and expanded in the century to come.
Vaccine Shortages & Delays
The latest national information about vaccine supplies and guidance for healthcare providers who are facing vaccine shortages or delays
Potential New Vaccines
Resources for finding information on potential vaccines, research and development status, licensure status, etc.
Vaccines: The Basics
Without vaccines, epidemics of many preventable diseases could return, resulting in increased – and unnecessary – illness, disability, and death.
FAQ about Vaccines & Diseases they Prevent
Images and logos on this website which are trademarked/copyrighted or used with permission of the trademark/copyright or logo holder are not in the public domain. These images and logos have been licensed for or used with permission in the materials provided on this website. The materials in the form presented on this website may be used without seeking further permission. Any other use of trademarked/copyrighted images or logos requires permission from the trademark/copyright holder...more
This graphic notice means that you are leaving an HHS Web site. For more information, please see the Exit Notification and Disclaimer policy. | Disease_Control_Prevention | you are leaving an HHS Web site |
15,295 | Who is at risk for Kyasanur Forest Disease (KFD)? ? | Transmission to humans may occur after a tick bite or contact with an infected animal, most importantly a sick or recently dead monkey. No person-to-person transmission has been described.
Large animals such as goats, cows, and sheep may become infected with KFD but play a limited role in the transmission of the disease. These animals provide the blood meals for ticks and it is possible for infected animals with viremia to infect other ticks, but transmission of KFDV to humans from these larger animals is extremely rare. Furthermore, there is no evidence of disease transmission via the unpasteurized milk of any of these animals. | Disease_Control_Prevention | Large animals such as goats, cows, and sheep |
15,296 | What are the symptoms of Kyasanur Forest Disease (KFD) ? | After an incubation period of 3-8 days, the symptoms of KFD begin suddenly with chills, fever, and headache. Severe muscle pain with vomiting, gastrointestinal symptoms and bleeding problems may occur 3-4 days after initial symptom onset. Patients may experience abnormally low blood pressure, and low platelet, red blood cell, and white blood cell counts.
After 1-2 weeks of symptoms, some patients recover without complication. However, the illness is biphasic for a subset of patients (10-20%) who experience a second wave of symptoms at the beginning of the third week. These symptoms include fever and signs of neurological manifestations, such as severe headache, mental disturbances, tremors, and vision deficits.
The estimated case-fatality rate is from 3 to 5% for KFD. | Disease_Control_Prevention | chills, fever, and headache |
15,297 | Who is at risk for Kyasanur Forest Disease (KFD)? ? | KFD has historically been limited to the western and central districts of Karnataka State, India. However, in November 2012, samples from humans and monkeys tested positive for KFDV in the southernmost district of the State which neighbors Tamil Nadu State and Kerala State, indicating the possibility of wider distribution of KFDV. Additionally, a virus very similar to KFD virus (Alkhurma hemorrhagic fever virus) has been described in Saudi Arabia.
People with recreational or occupational exposure to rural or outdoor settings (e.g., hunters, herders, forest workers, farmers) within Karnataka State are potentially at risk for infection by contact with infected ticks. Seasonality is another important risk factor as more cases are reported during the dry season, from November through June. | Disease_Control_Prevention | People with recreational or occupational exposure to rural or outdoor settings |
15,298 | How to diagnose Kyasanur Forest Disease (KFD) ? | Diagnosis can be made in the early stage of illness by molecular detection by PCR or virus isolation from blood. Later, serologic testing using enzyme-linked immunosorbent serologic assay (ELISA) can be performed. | Disease_Control_Prevention | molecular detection by PCR or virus isolation from blood |
15,299 | What are the treatments for Kyasanur Forest Disease (KFD) ? | There is no specific treatment for KFD, but early hospitalization and supportive therapy is important. Supportive therapy includes the maintenance of hydration and the usual precautions for patients with bleeding disorders. | Disease_Control_Prevention | early hospitalization and supportive therapy |
15,300 | How to prevent Kyasanur Forest Disease (KFD) ? | A vaccine does exist for KFD and is used in endemic areas of India. Additional preventative measures include insect repellents and wearing protective clothing in areas where ticks are endemic. | Disease_Control_Prevention | wearing protective clothing |