state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
α : Type u
β : Type v
γ : Type w
⊢ atBot ≤ cocompact ℝ | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by | simp | theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by | Mathlib.Topology.Instances.Real.82_0.cAejORboOY2cNtK | theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
⊢ atTop ≤ cocompact ℝ | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by | simp | theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by | Mathlib.Topology.Instances.Real.83_0.cAejORboOY2cNtK | theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
s : Set ℝ
x : ℝ
⊢ x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by | simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq] | theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by | Mathlib.Topology.Instances.Real.91_0.cAejORboOY2cNtK | theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
⊢ CompleteSpace ℝ | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
| apply complete_of_cauchySeq_tendsto | instance : CompleteSpace ℝ := by
| Mathlib.Topology.Instances.Real.142_0.cAejORboOY2cNtK | instance : CompleteSpace ℝ | Mathlib_Topology_Instances_Real |
case a
α : Type u
β : Type v
γ : Type w
⊢ ∀ (u : ℕ → ℝ), CauchySeq u → ∃ a, Tendsto u atTop (𝓝 a) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
| intro u hu | instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
| Mathlib.Topology.Instances.Real.142_0.cAejORboOY2cNtK | instance : CompleteSpace ℝ | Mathlib_Topology_Instances_Real |
case a
α : Type u
β : Type v
γ : Type w
u : ℕ → ℝ
hu : CauchySeq u
⊢ ∃ a, Tendsto u atTop (𝓝 a) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
| let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩ | instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
| Mathlib.Topology.Instances.Real.142_0.cAejORboOY2cNtK | instance : CompleteSpace ℝ | Mathlib_Topology_Instances_Real |
case a
α : Type u
β : Type v
γ : Type w
u : ℕ → ℝ
hu : CauchySeq u
c : CauSeq ℝ abs := { val := u, property := (_ : ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε) }
⊢ ∃ a, Tendsto u atTop (𝓝 a) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
| refine' ⟨c.lim, fun s h => _⟩ | instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
| Mathlib.Topology.Instances.Real.142_0.cAejORboOY2cNtK | instance : CompleteSpace ℝ | Mathlib_Topology_Instances_Real |
case a
α : Type u
β : Type v
γ : Type w
u : ℕ → ℝ
hu : CauchySeq u
c : CauSeq ℝ abs := { val := u, property := (_ : ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε) }
s : Set ℝ
h : s ∈ 𝓝 (CauSeq.lim c)
⊢ s ∈ map u atTop | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
| rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩ | instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
| Mathlib.Topology.Instances.Real.142_0.cAejORboOY2cNtK | instance : CompleteSpace ℝ | Mathlib_Topology_Instances_Real |
case a.intro.intro
α : Type u
β : Type v
γ : Type w
u : ℕ → ℝ
hu : CauchySeq u
c : CauSeq ℝ abs := { val := u, property := (_ : ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε) }
s : Set ℝ
h : s ∈ 𝓝 (CauSeq.lim c)
ε : ℝ
ε0 : ε > 0
hε : ball (CauSeq.lim c) ε ⊆ s
⊢ s ∈ map u atTop | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
| have := c.equiv_lim ε ε0 | instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
| Mathlib.Topology.Instances.Real.142_0.cAejORboOY2cNtK | instance : CompleteSpace ℝ | Mathlib_Topology_Instances_Real |
case a.intro.intro
α : Type u
β : Type v
γ : Type w
u : ℕ → ℝ
hu : CauchySeq u
c : CauSeq ℝ abs := { val := u, property := (_ : ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε) }
s : Set ℝ
h : s ∈ 𝓝 (CauSeq.lim c)
ε : ℝ
ε0 : ε > 0
hε : ball (CauSeq.lim c) ε ⊆ s
this : ∃ i, ∀ j ≥ i, |↑(c - CauSeq.const abs (CauSeq.lim c)) j| < ε
⊢ s ∈ map u atTop | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
| simp only [mem_map, mem_atTop_sets, mem_setOf_eq] | instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
| Mathlib.Topology.Instances.Real.142_0.cAejORboOY2cNtK | instance : CompleteSpace ℝ | Mathlib_Topology_Instances_Real |
case a.intro.intro
α : Type u
β : Type v
γ : Type w
u : ℕ → ℝ
hu : CauchySeq u
c : CauSeq ℝ abs := { val := u, property := (_ : ∀ ε > 0, ∃ N, ∀ n ≥ N, dist (u n) (u N) < ε) }
s : Set ℝ
h : s ∈ 𝓝 (CauSeq.lim c)
ε : ℝ
ε0 : ε > 0
hε : ball (CauSeq.lim c) ε ⊆ s
this : ∃ i, ∀ j ≥ i, |↑(c - CauSeq.const abs (CauSeq.lim c)) j| < ε
⊢ ∃ a, ∀ b ≥ a, b ∈ u ⁻¹' s | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
| refine' this.imp fun N hN n hn => hε (hN n hn) | instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
| Mathlib.Topology.Instances.Real.142_0.cAejORboOY2cNtK | instance : CompleteSpace ℝ | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
x ε : ℝ
⊢ TotallyBounded (ball x ε) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
| rw [Real.ball_eq_Ioo] | theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
| Mathlib.Topology.Instances.Real.152_0.cAejORboOY2cNtK | theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
x ε : ℝ
⊢ TotallyBounded (Ioo (x - ε) (x + ε)) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; | apply totallyBounded_Ioo | theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; | Mathlib.Topology.Instances.Real.152_0.cAejORboOY2cNtK | theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
q : ℚ
x : ℝ
hx : x ∈ {r | ↑q ≤ r}
t : Set ℝ
ht : t ∈ 𝓝 x
ε : ℝ
ε0 : ε > 0
hε : ball x ε ⊆ t
p : ℚ
h₁ : x < ↑p
h₂ : ↑p < x + ε
⊢ ↑p ∈ ball x ε | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by | rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'] | theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by | Mathlib.Topology.Instances.Real.158_0.cAejORboOY2cNtK | theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
s : Set ℝ
bdd : IsBounded s
⊢ BddBelow s ∧ BddAbove s | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
| obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0 | theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
| Mathlib.Topology.Instances.Real.178_0.cAejORboOY2cNtK | theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
s : Set ℝ
bdd : IsBounded s
⊢ ∃ r, s ⊆ Icc (-r) r | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
| simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0 | theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
| Mathlib.Topology.Instances.Real.178_0.cAejORboOY2cNtK | theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s | Mathlib_Topology_Instances_Real |
case intro
α : Type u
β : Type v
γ : Type w
s : Set ℝ
bdd : IsBounded s
r : ℝ
hr : s ⊆ Icc (-r) r
⊢ BddBelow s ∧ BddAbove s | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
| exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩ | theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
| Mathlib.Topology.Instances.Real.178_0.cAejORboOY2cNtK | theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
inst✝ : TopologicalSpace α
f : ℝ → α
c : ℝ
hp : Periodic f c
hc : c ≠ 0
hf : Continuous f
⊢ IsCompact (range f) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
| rw [← hp.image_uIcc hc 0] | /-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
| Mathlib.Topology.Instances.Real.198_0.cAejORboOY2cNtK | /-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
inst✝ : TopologicalSpace α
f : ℝ → α
c : ℝ
hp : Periodic f c
hc : c ≠ 0
hf : Continuous f
⊢ IsCompact (f '' [[0, 0 + c]]) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
| exact isCompact_uIcc.image hf | /-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
| Mathlib.Topology.Instances.Real.198_0.cAejORboOY2cNtK | /-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
a : ℝ
⊢ DiscreteTopology ↥(AddSubgroup.zmultiples a) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
| rcases eq_or_ne a 0 with (rfl | ha) | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
| Mathlib.Topology.Instances.Real.227_0.cAejORboOY2cNtK | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) | Mathlib_Topology_Instances_Real |
case inl
α : Type u
β : Type v
γ : Type w
⊢ DiscreteTopology ↥(AddSubgroup.zmultiples 0) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· | rw [AddSubgroup.zmultiples_zero_eq_bot] | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· | Mathlib.Topology.Instances.Real.227_0.cAejORboOY2cNtK | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) | Mathlib_Topology_Instances_Real |
case inl
α : Type u
β : Type v
γ : Type w
⊢ DiscreteTopology ↥⊥ | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
| exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ)) | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
| Mathlib.Topology.Instances.Real.227_0.cAejORboOY2cNtK | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) | Mathlib_Topology_Instances_Real |
case inr
α : Type u
β : Type v
γ : Type w
a : ℝ
ha : a ≠ 0
⊢ DiscreteTopology ↥(AddSubgroup.zmultiples a) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
| rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff] | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
| Mathlib.Topology.Instances.Real.227_0.cAejORboOY2cNtK | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) | Mathlib_Topology_Instances_Real |
case inr
α : Type u
β : Type v
γ : Type w
a : ℝ
ha : a ≠ 0
⊢ ∃ t, IsOpen t ∧ Subtype.val ⁻¹' t = {0} | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
| refine' ⟨ball 0 |a|, isOpen_ball, _⟩ | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
| Mathlib.Topology.Instances.Real.227_0.cAejORboOY2cNtK | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) | Mathlib_Topology_Instances_Real |
case inr
α : Type u
β : Type v
γ : Type w
a : ℝ
ha : a ≠ 0
⊢ Subtype.val ⁻¹' ball 0 |a| = {0} | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
| ext ⟨x, hx⟩ | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
| Mathlib.Topology.Instances.Real.227_0.cAejORboOY2cNtK | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) | Mathlib_Topology_Instances_Real |
case inr.h.mk
α : Type u
β : Type v
γ : Type w
a : ℝ
ha : a ≠ 0
x : ℝ
hx : x ∈ AddSubgroup.zmultiples a
⊢ { val := x, property := hx } ∈ Subtype.val ⁻¹' ball 0 |a| ↔ { val := x, property := hx } ∈ {0} | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
| obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
| Mathlib.Topology.Instances.Real.227_0.cAejORboOY2cNtK | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) | Mathlib_Topology_Instances_Real |
case inr.h.mk.intro
α : Type u
β : Type v
γ : Type w
a : ℝ
ha : a ≠ 0
k : ℤ
hx : k • a ∈ AddSubgroup.zmultiples a
⊢ { val := k • a, property := hx } ∈ Subtype.val ⁻¹' ball 0 |a| ↔ { val := k • a, property := hx } ∈ {0} | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
| simp [ha, Real.dist_eq, abs_mul, (by norm_cast : |(k : ℝ)| < 1 ↔ |k| < 1)] | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
| Mathlib.Topology.Instances.Real.227_0.cAejORboOY2cNtK | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
a : ℝ
ha : a ≠ 0
k : ℤ
hx : k • a ∈ AddSubgroup.zmultiples a
⊢ |↑k| < 1 ↔ |k| < 1 | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
simp [ha, Real.dist_eq, abs_mul, (by | norm_cast | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
simp [ha, Real.dist_eq, abs_mul, (by | Mathlib.Topology.Instances.Real.227_0.cAejORboOY2cNtK | /-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
⊢ Tendsto Int.cast Filter.cofinite (cocompact ℝ) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
simp [ha, Real.dist_eq, abs_mul, (by norm_cast : |(k : ℝ)| < 1 ↔ |k| < 1)]
/-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) := by
| apply (castAddHom ℝ).tendsto_coe_cofinite_of_discrete cast_injective | /-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) := by
| Mathlib.Topology.Instances.Real.239_0.cAejORboOY2cNtK | /-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
⊢ DiscreteTopology ↥(AddMonoidHom.range (castAddHom ℝ)) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
simp [ha, Real.dist_eq, abs_mul, (by norm_cast : |(k : ℝ)| < 1 ↔ |k| < 1)]
/-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) := by
apply (castAddHom ℝ).tendsto_coe_cofinite_of_discrete cast_injective
| rw [range_castAddHom] | /-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) := by
apply (castAddHom ℝ).tendsto_coe_cofinite_of_discrete cast_injective
| Mathlib.Topology.Instances.Real.239_0.cAejORboOY2cNtK | /-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
⊢ DiscreteTopology ↥(AddSubgroup.zmultiples 1) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
simp [ha, Real.dist_eq, abs_mul, (by norm_cast : |(k : ℝ)| < 1 ↔ |k| < 1)]
/-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) := by
apply (castAddHom ℝ).tendsto_coe_cofinite_of_discrete cast_injective
rw [range_castAddHom]
| infer_instance | /-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) := by
apply (castAddHom ℝ).tendsto_coe_cofinite_of_discrete cast_injective
rw [range_castAddHom]
| Mathlib.Topology.Instances.Real.239_0.cAejORboOY2cNtK | /-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
a : ℝ
ha : a ≠ 0
⊢ Tendsto (⇑((zmultiplesHom ℝ) a)) Filter.cofinite (cocompact ℝ) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
simp [ha, Real.dist_eq, abs_mul, (by norm_cast : |(k : ℝ)| < 1 ↔ |k| < 1)]
/-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) := by
apply (castAddHom ℝ).tendsto_coe_cofinite_of_discrete cast_injective
rw [range_castAddHom]
infer_instance
#align int.tendsto_coe_cofinite Int.tendsto_coe_cofinite
/-- For nonzero `a`, the "multiples of `a`" map `zmultiplesHom` from `ℤ` to `ℝ` is discrete, i.e.
inverse images of compact sets are finite. -/
theorem tendsto_zmultiplesHom_cofinite {a : ℝ} (ha : a ≠ 0) :
Tendsto (zmultiplesHom ℝ a) cofinite (cocompact ℝ) := by
| apply (zmultiplesHom ℝ a).tendsto_coe_cofinite_of_discrete $ smul_left_injective ℤ ha | /-- For nonzero `a`, the "multiples of `a`" map `zmultiplesHom` from `ℤ` to `ℝ` is discrete, i.e.
inverse images of compact sets are finite. -/
theorem tendsto_zmultiplesHom_cofinite {a : ℝ} (ha : a ≠ 0) :
Tendsto (zmultiplesHom ℝ a) cofinite (cocompact ℝ) := by
| Mathlib.Topology.Instances.Real.246_0.cAejORboOY2cNtK | /-- For nonzero `a`, the "multiples of `a`" map `zmultiplesHom` from `ℤ` to `ℝ` is discrete, i.e.
inverse images of compact sets are finite. -/
theorem tendsto_zmultiplesHom_cofinite {a : ℝ} (ha : a ≠ 0) :
Tendsto (zmultiplesHom ℝ a) cofinite (cocompact ℝ) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
a : ℝ
ha : a ≠ 0
⊢ DiscreteTopology ↥(AddMonoidHom.range ((zmultiplesHom ℝ) a)) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
simp [ha, Real.dist_eq, abs_mul, (by norm_cast : |(k : ℝ)| < 1 ↔ |k| < 1)]
/-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) := by
apply (castAddHom ℝ).tendsto_coe_cofinite_of_discrete cast_injective
rw [range_castAddHom]
infer_instance
#align int.tendsto_coe_cofinite Int.tendsto_coe_cofinite
/-- For nonzero `a`, the "multiples of `a`" map `zmultiplesHom` from `ℤ` to `ℝ` is discrete, i.e.
inverse images of compact sets are finite. -/
theorem tendsto_zmultiplesHom_cofinite {a : ℝ} (ha : a ≠ 0) :
Tendsto (zmultiplesHom ℝ a) cofinite (cocompact ℝ) := by
apply (zmultiplesHom ℝ a).tendsto_coe_cofinite_of_discrete $ smul_left_injective ℤ ha
| rw [AddSubgroup.range_zmultiplesHom] | /-- For nonzero `a`, the "multiples of `a`" map `zmultiplesHom` from `ℤ` to `ℝ` is discrete, i.e.
inverse images of compact sets are finite. -/
theorem tendsto_zmultiplesHom_cofinite {a : ℝ} (ha : a ≠ 0) :
Tendsto (zmultiplesHom ℝ a) cofinite (cocompact ℝ) := by
apply (zmultiplesHom ℝ a).tendsto_coe_cofinite_of_discrete $ smul_left_injective ℤ ha
| Mathlib.Topology.Instances.Real.246_0.cAejORboOY2cNtK | /-- For nonzero `a`, the "multiples of `a`" map `zmultiplesHom` from `ℤ` to `ℝ` is discrete, i.e.
inverse images of compact sets are finite. -/
theorem tendsto_zmultiplesHom_cofinite {a : ℝ} (ha : a ≠ 0) :
Tendsto (zmultiplesHom ℝ a) cofinite (cocompact ℝ) | Mathlib_Topology_Instances_Real |
α : Type u
β : Type v
γ : Type w
a : ℝ
ha : a ≠ 0
⊢ DiscreteTopology ↥(AddSubgroup.zmultiples a) | /-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.Topology.Algebra.UniformMulAction
import Mathlib.Topology.Algebra.Star
import Mathlib.Topology.Algebra.Order.Field
import Mathlib.Algebra.Periodic
import Mathlib.Topology.Instances.Int
#align_import topology.instances.real from "leanprover-community/mathlib"@"9a59dcb7a2d06bf55da57b9030169219980660cd"
/-!
# Topological properties of ℝ
-/
noncomputable section
open Classical Filter Int Metric Set TopologicalSpace Bornology
open scoped Topology Uniformity Interval
universe u v w
variable {α : Type u} {β : Type v} {γ : Type w}
instance : NoncompactSpace ℝ := Int.closedEmbedding_coe_real.noncompactSpace
theorem Real.uniformContinuous_add : UniformContinuous fun p : ℝ × ℝ => p.1 + p.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0
⟨δ, δ0, fun h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ h₁ h₂⟩
#align real.uniform_continuous_add Real.uniformContinuous_add
theorem Real.uniformContinuous_neg : UniformContinuous (@Neg.neg ℝ _) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨_, ε0, fun h => by rw [dist_comm] at h; simpa only [Real.dist_eq, neg_sub_neg] using h⟩
#align real.uniform_continuous_neg Real.uniformContinuous_neg
instance : ContinuousStar ℝ := ⟨continuous_id⟩
instance : UniformAddGroup ℝ :=
UniformAddGroup.mk' Real.uniformContinuous_add Real.uniformContinuous_neg
-- short-circuit type class inference
instance : TopologicalAddGroup ℝ := by infer_instance
instance : TopologicalRing ℝ := inferInstance
instance : TopologicalDivisionRing ℝ := inferInstance
instance : ProperSpace ℝ where
isCompact_closedBall x r := by
rw [Real.closedBall_eq_Icc]
apply isCompact_Icc
instance : SecondCountableTopology ℝ := secondCountable_of_proper
theorem Real.isTopologicalBasis_Ioo_rat :
@IsTopologicalBasis ℝ _ (⋃ (a : ℚ) (b : ℚ) (_ : a < b), {Ioo (a : ℝ) b}) :=
isTopologicalBasis_of_isOpen_of_nhds (by simp (config := { contextual := true }) [isOpen_Ioo])
fun a v hav hv =>
let ⟨l, u, ⟨hl, hu⟩, h⟩ := mem_nhds_iff_exists_Ioo_subset.mp (IsOpen.mem_nhds hv hav)
let ⟨q, hlq, hqa⟩ := exists_rat_btwn hl
let ⟨p, hap, hpu⟩ := exists_rat_btwn hu
⟨Ioo q p, by
simp only [mem_iUnion]
exact ⟨q, p, Rat.cast_lt.1 <| hqa.trans hap, rfl⟩, ⟨hqa, hap⟩, fun a' ⟨hqa', ha'p⟩ =>
h ⟨hlq.trans hqa', ha'p.trans hpu⟩⟩
#align real.is_topological_basis_Ioo_rat Real.isTopologicalBasis_Ioo_rat
@[simp]
theorem Real.cobounded_eq : cobounded ℝ = atBot ⊔ atTop := by
simp only [← comap_dist_right_atTop (0 : ℝ), Real.dist_eq, sub_zero, comap_abs_atTop]
@[simp]
theorem Real.cocompact_eq : cocompact ℝ = atBot ⊔ atTop := by
rw [← cobounded_eq_cocompact, cobounded_eq]
#align real.cocompact_eq Real.cocompact_eq
theorem Real.atBot_le_cocompact : atBot ≤ cocompact ℝ := by simp
theorem Real.atTop_le_cocompact : atTop ≤ cocompact ℝ := by simp
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (fun p : ℚ => p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
theorem Real.mem_closure_iff {s : Set ℝ} {x : ℝ} : x ∈ closure s ↔ ∀ ε > 0, ∃ y ∈ s, |y - x| < ε :=
by simp [mem_closure_iff_nhds_basis nhds_basis_ball, Real.dist_eq]
#align real.mem_closure_iff Real.mem_closure_iff
theorem Real.uniformContinuous_inv (s : Set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ |x|) :
UniformContinuous fun p : s => p.1⁻¹ :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0
⟨δ, δ0, fun {a b} h => Hδ (H _ a.2) (H _ b.2) h⟩
#align real.uniform_continuous_inv Real.uniformContinuous_inv
theorem Real.uniformContinuous_abs : UniformContinuous (abs : ℝ → ℝ) :=
Metric.uniformContinuous_iff.2 fun ε ε0 =>
⟨ε, ε0, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
#align real.uniform_continuous_abs Real.uniformContinuous_abs
@[deprecated continuousAt_inv₀]
theorem Real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : Tendsto (fun q => q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
continuousAt_inv₀ r0
#align real.tendsto_inv Real.tendsto_inv
theorem Real.continuous_inv : Continuous fun a : { r : ℝ // r ≠ 0 } => a.val⁻¹ :=
continuousOn_inv₀.restrict
#align real.continuous_inv Real.continuous_inv
@[deprecated Continuous.inv₀]
theorem Real.Continuous.inv [TopologicalSpace α] {f : α → ℝ} (h : ∀ a, f a ≠ 0)
(hf : Continuous f) : Continuous fun a => (f a)⁻¹ :=
hf.inv₀ h
#align real.continuous.inv Real.Continuous.inv
theorem Real.uniformContinuous_const_mul {x : ℝ} : UniformContinuous (x * ·) :=
uniformContinuous_const_smul x
#align real.uniform_continuous_const_mul Real.uniformContinuous_const_mul
theorem Real.uniformContinuous_mul (s : Set (ℝ × ℝ)) {r₁ r₂ : ℝ}
(H : ∀ x ∈ s, |(x : ℝ × ℝ).1| < r₁ ∧ |x.2| < r₂) :
UniformContinuous fun p : s => p.1.1 * p.1.2 :=
Metric.uniformContinuous_iff.2 fun _ε ε0 =>
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0
⟨δ, δ0, fun {a b} h =>
let ⟨h₁, h₂⟩ := max_lt_iff.1 h
Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
#align real.uniform_continuous_mul Real.uniformContinuous_mul
@[deprecated continuous_mul]
protected theorem Real.continuous_mul : Continuous fun p : ℝ × ℝ => p.1 * p.2 := continuous_mul
#align real.continuous_mul Real.continuous_mul
-- porting note: moved `TopologicalRing` instance up
instance : CompleteSpace ℝ := by
apply complete_of_cauchySeq_tendsto
intro u hu
let c : CauSeq ℝ abs := ⟨u, Metric.cauchySeq_iff'.1 hu⟩
refine' ⟨c.lim, fun s h => _⟩
rcases Metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩
have := c.equiv_lim ε ε0
simp only [mem_map, mem_atTop_sets, mem_setOf_eq]
refine' this.imp fun N hN n hn => hε (hN n hn)
theorem Real.totallyBounded_ball (x ε : ℝ) : TotallyBounded (ball x ε) := by
rw [Real.ball_eq_Ioo]; apply totallyBounded_Ioo
#align real.totally_bounded_ball Real.totallyBounded_ball
section
theorem closure_of_rat_image_lt {q : ℚ} :
closure (((↑) : ℚ → ℝ) '' { x | q < x }) = { r | ↑q ≤ r } :=
Subset.antisymm
((isClosed_ge' _).closure_subset_iff.2
(image_subset_iff.2 fun p h => le_of_lt <| (@Rat.cast_lt ℝ _ _ _).2 h))
fun x hx => mem_closure_iff_nhds.2 fun t ht =>
let ⟨ε, ε0, hε⟩ := Metric.mem_nhds_iff.1 ht
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0)
⟨p, hε <| by rwa [mem_ball, Real.dist_eq, abs_of_pos (sub_pos.2 h₁), sub_lt_iff_lt_add'],
mem_image_of_mem _ <| Rat.cast_lt.1 <| lt_of_le_of_lt hx.out h₁⟩
#align closure_of_rat_image_lt closure_of_rat_image_lt
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe : ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_
-/
theorem Real.isBounded_iff_bddBelow_bddAbove {s : Set ℝ} : IsBounded s ↔ BddBelow s ∧ BddAbove s :=
⟨fun bdd ↦ by
obtain ⟨r, hr⟩ : ∃ r : ℝ, s ⊆ Icc (-r) r := by
simpa [Real.closedBall_eq_Icc] using bdd.subset_closedBall 0
exact ⟨bddBelow_Icc.mono hr, bddAbove_Icc.mono hr⟩,
fun h => isBounded_of_bddAbove_of_bddBelow h.2 h.1⟩
#align real.bounded_iff_bdd_below_bdd_above Real.isBounded_iff_bddBelow_bddAbove
theorem Real.subset_Icc_sInf_sSup_of_isBounded {s : Set ℝ} (h : IsBounded s) :
s ⊆ Icc (sInf s) (sSup s) :=
subset_Icc_csInf_csSup (Real.isBounded_iff_bddBelow_bddAbove.1 h).1
(Real.isBounded_iff_bddBelow_bddAbove.1 h).2
#align real.subset_Icc_Inf_Sup_of_bounded Real.subset_Icc_sInf_sSup_of_isBounded
end
section Periodic
namespace Function
/-- A continuous, periodic function has compact range. -/
theorem Periodic.compact_of_continuous [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : c ≠ 0) (hf : Continuous f) : IsCompact (range f) := by
rw [← hp.image_uIcc hc 0]
exact isCompact_uIcc.image hf
#align function.periodic.compact_of_continuous Function.Periodic.compact_of_continuous
@[deprecated Function.Periodic.compact_of_continuous]
theorem Periodic.compact_of_continuous' [TopologicalSpace α] {f : ℝ → α} {c : ℝ} (hp : Periodic f c)
(hc : 0 < c) (hf : Continuous f) : IsCompact (range f) :=
hp.compact_of_continuous hc.ne' hf
#align function.periodic.compact_of_continuous' Function.Periodic.compact_of_continuous'
/-- A continuous, periodic function is bounded. -/
theorem Periodic.isBounded_of_continuous [PseudoMetricSpace α] {f : ℝ → α} {c : ℝ}
(hp : Periodic f c) (hc : c ≠ 0) (hf : Continuous f) : IsBounded (range f) :=
(hp.compact_of_continuous hc hf).isBounded
#align function.periodic.bounded_of_continuous Function.Periodic.isBounded_of_continuous
end Function
end Periodic
section Subgroups
namespace Int
open Metric
/-- This is a special case of `NormedSpace.discreteTopology_zmultiples`. It exists only to simplify
dependencies. -/
instance {a : ℝ} : DiscreteTopology (AddSubgroup.zmultiples a) := by
rcases eq_or_ne a 0 with (rfl | ha)
· rw [AddSubgroup.zmultiples_zero_eq_bot]
exact Subsingleton.discreteTopology (α := (⊥ : Submodule ℤ ℝ))
rw [discreteTopology_iff_isOpen_singleton_zero, isOpen_induced_iff]
refine' ⟨ball 0 |a|, isOpen_ball, _⟩
ext ⟨x, hx⟩
obtain ⟨k, rfl⟩ := AddSubgroup.mem_zmultiples_iff.mp hx
simp [ha, Real.dist_eq, abs_mul, (by norm_cast : |(k : ℝ)| < 1 ↔ |k| < 1)]
/-- Under the coercion from `ℤ` to `ℝ`, inverse images of compact sets are finite. -/
theorem tendsto_coe_cofinite : Tendsto ((↑) : ℤ → ℝ) cofinite (cocompact ℝ) := by
apply (castAddHom ℝ).tendsto_coe_cofinite_of_discrete cast_injective
rw [range_castAddHom]
infer_instance
#align int.tendsto_coe_cofinite Int.tendsto_coe_cofinite
/-- For nonzero `a`, the "multiples of `a`" map `zmultiplesHom` from `ℤ` to `ℝ` is discrete, i.e.
inverse images of compact sets are finite. -/
theorem tendsto_zmultiplesHom_cofinite {a : ℝ} (ha : a ≠ 0) :
Tendsto (zmultiplesHom ℝ a) cofinite (cocompact ℝ) := by
apply (zmultiplesHom ℝ a).tendsto_coe_cofinite_of_discrete $ smul_left_injective ℤ ha
rw [AddSubgroup.range_zmultiplesHom]
| infer_instance | /-- For nonzero `a`, the "multiples of `a`" map `zmultiplesHom` from `ℤ` to `ℝ` is discrete, i.e.
inverse images of compact sets are finite. -/
theorem tendsto_zmultiplesHom_cofinite {a : ℝ} (ha : a ≠ 0) :
Tendsto (zmultiplesHom ℝ a) cofinite (cocompact ℝ) := by
apply (zmultiplesHom ℝ a).tendsto_coe_cofinite_of_discrete $ smul_left_injective ℤ ha
rw [AddSubgroup.range_zmultiplesHom]
| Mathlib.Topology.Instances.Real.246_0.cAejORboOY2cNtK | /-- For nonzero `a`, the "multiples of `a`" map `zmultiplesHom` from `ℤ` to `ℝ` is discrete, i.e.
inverse images of compact sets are finite. -/
theorem tendsto_zmultiplesHom_cofinite {a : ℝ} (ha : a ≠ 0) :
Tendsto (zmultiplesHom ℝ a) cofinite (cocompact ℝ) | Mathlib_Topology_Instances_Real |
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
k : Fin n
⊢ (tail (cons y s)) k = s k | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by | simp only [tail_apply, cons_succ] | @[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by | Mathlib.Data.Finsupp.Fin.54_0.Ry6yGz0hTElIyP3 | @[simp]
theorem tail_cons : tail (cons y s) = s | Mathlib_Data_Finsupp_Fin |
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
⊢ cons (t 0) (tail t) = t | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
| ext a | @[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
| Mathlib.Data.Finsupp.Fin.59_0.Ry6yGz0hTElIyP3 | @[simp]
theorem cons_tail : cons (t 0) (tail t) = t | Mathlib_Data_Finsupp_Fin |
case h
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
a : Fin (n + 1)
⊢ (cons (t 0) (tail t)) a = t a | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
| by_cases c_a : a = 0 | @[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
| Mathlib.Data.Finsupp.Fin.59_0.Ry6yGz0hTElIyP3 | @[simp]
theorem cons_tail : cons (t 0) (tail t) = t | Mathlib_Data_Finsupp_Fin |
case pos
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
a : Fin (n + 1)
c_a : a = 0
⊢ (cons (t 0) (tail t)) a = t a | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· | rw [c_a, cons_zero] | @[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· | Mathlib.Data.Finsupp.Fin.59_0.Ry6yGz0hTElIyP3 | @[simp]
theorem cons_tail : cons (t 0) (tail t) = t | Mathlib_Data_Finsupp_Fin |
case neg
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
a : Fin (n + 1)
c_a : ¬a = 0
⊢ (cons (t 0) (tail t)) a = t a | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· | rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply] | @[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· | Mathlib.Data.Finsupp.Fin.59_0.Ry6yGz0hTElIyP3 | @[simp]
theorem cons_tail : cons (t 0) (tail t) = t | Mathlib_Data_Finsupp_Fin |
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
⊢ cons 0 0 = 0 | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
| ext a | @[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
| Mathlib.Data.Finsupp.Fin.67_0.Ry6yGz0hTElIyP3 | @[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 | Mathlib_Data_Finsupp_Fin |
case h
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
a : Fin (n + 1)
⊢ (cons 0 0) a = 0 a | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
| by_cases c : a = 0 | @[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
| Mathlib.Data.Finsupp.Fin.67_0.Ry6yGz0hTElIyP3 | @[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 | Mathlib_Data_Finsupp_Fin |
case pos
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
a : Fin (n + 1)
c : a = 0
⊢ (cons 0 0) a = 0 a | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· | simp [c] | @[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· | Mathlib.Data.Finsupp.Fin.67_0.Ry6yGz0hTElIyP3 | @[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 | Mathlib_Data_Finsupp_Fin |
case neg
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
a : Fin (n + 1)
c : ¬a = 0
⊢ (cons 0 0) a = 0 a | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· | rw [← Fin.succ_pred a c, cons_succ] | @[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· | Mathlib.Data.Finsupp.Fin.67_0.Ry6yGz0hTElIyP3 | @[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 | Mathlib_Data_Finsupp_Fin |
case neg
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
a : Fin (n + 1)
c : ¬a = 0
⊢ 0 (Fin.pred a c) = 0 (Fin.succ (Fin.pred a c)) | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· rw [← Fin.succ_pred a c, cons_succ]
| simp | @[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· rw [← Fin.succ_pred a c, cons_succ]
| Mathlib.Data.Finsupp.Fin.67_0.Ry6yGz0hTElIyP3 | @[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 | Mathlib_Data_Finsupp_Fin |
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
h : y ≠ 0
⊢ cons y s ≠ 0 | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· rw [← Fin.succ_pred a c, cons_succ]
simp
#align finsupp.cons_zero_zero Finsupp.cons_zero_zero
variable {s} {y}
theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 := by
| contrapose! h with c | theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 := by
| Mathlib.Data.Finsupp.Fin.78_0.Ry6yGz0hTElIyP3 | theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 | Mathlib_Data_Finsupp_Fin |
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
c : cons y s = 0
⊢ y = 0 | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· rw [← Fin.succ_pred a c, cons_succ]
simp
#align finsupp.cons_zero_zero Finsupp.cons_zero_zero
variable {s} {y}
theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
| rw [← cons_zero y s, c, Finsupp.coe_zero, Pi.zero_apply] | theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
| Mathlib.Data.Finsupp.Fin.78_0.Ry6yGz0hTElIyP3 | theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 | Mathlib_Data_Finsupp_Fin |
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
h : s ≠ 0
⊢ cons y s ≠ 0 | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· rw [← Fin.succ_pred a c, cons_succ]
simp
#align finsupp.cons_zero_zero Finsupp.cons_zero_zero
variable {s} {y}
theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
rw [← cons_zero y s, c, Finsupp.coe_zero, Pi.zero_apply]
#align finsupp.cons_ne_zero_of_left Finsupp.cons_ne_zero_of_left
theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 := by
| contrapose! h with c | theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 := by
| Mathlib.Data.Finsupp.Fin.83_0.Ry6yGz0hTElIyP3 | theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 | Mathlib_Data_Finsupp_Fin |
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
c : cons y s = 0
⊢ s = 0 | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· rw [← Fin.succ_pred a c, cons_succ]
simp
#align finsupp.cons_zero_zero Finsupp.cons_zero_zero
variable {s} {y}
theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
rw [← cons_zero y s, c, Finsupp.coe_zero, Pi.zero_apply]
#align finsupp.cons_ne_zero_of_left Finsupp.cons_ne_zero_of_left
theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
| ext a | theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
| Mathlib.Data.Finsupp.Fin.83_0.Ry6yGz0hTElIyP3 | theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 | Mathlib_Data_Finsupp_Fin |
case h
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
c : cons y s = 0
a : Fin n
⊢ s a = 0 a | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· rw [← Fin.succ_pred a c, cons_succ]
simp
#align finsupp.cons_zero_zero Finsupp.cons_zero_zero
variable {s} {y}
theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
rw [← cons_zero y s, c, Finsupp.coe_zero, Pi.zero_apply]
#align finsupp.cons_ne_zero_of_left Finsupp.cons_ne_zero_of_left
theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
ext a
| simp [← cons_succ a y s, c] | theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
ext a
| Mathlib.Data.Finsupp.Fin.83_0.Ry6yGz0hTElIyP3 | theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 | Mathlib_Data_Finsupp_Fin |
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
⊢ cons y s ≠ 0 ↔ y ≠ 0 ∨ s ≠ 0 | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· rw [← Fin.succ_pred a c, cons_succ]
simp
#align finsupp.cons_zero_zero Finsupp.cons_zero_zero
variable {s} {y}
theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
rw [← cons_zero y s, c, Finsupp.coe_zero, Pi.zero_apply]
#align finsupp.cons_ne_zero_of_left Finsupp.cons_ne_zero_of_left
theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
ext a
simp [← cons_succ a y s, c]
#align finsupp.cons_ne_zero_of_right Finsupp.cons_ne_zero_of_right
theorem cons_ne_zero_iff : cons y s ≠ 0 ↔ y ≠ 0 ∨ s ≠ 0 := by
| refine' ⟨fun h => _, fun h => h.casesOn cons_ne_zero_of_left cons_ne_zero_of_right⟩ | theorem cons_ne_zero_iff : cons y s ≠ 0 ↔ y ≠ 0 ∨ s ≠ 0 := by
| Mathlib.Data.Finsupp.Fin.89_0.Ry6yGz0hTElIyP3 | theorem cons_ne_zero_iff : cons y s ≠ 0 ↔ y ≠ 0 ∨ s ≠ 0 | Mathlib_Data_Finsupp_Fin |
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
h : cons y s ≠ 0
⊢ y ≠ 0 ∨ s ≠ 0 | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· rw [← Fin.succ_pred a c, cons_succ]
simp
#align finsupp.cons_zero_zero Finsupp.cons_zero_zero
variable {s} {y}
theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
rw [← cons_zero y s, c, Finsupp.coe_zero, Pi.zero_apply]
#align finsupp.cons_ne_zero_of_left Finsupp.cons_ne_zero_of_left
theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
ext a
simp [← cons_succ a y s, c]
#align finsupp.cons_ne_zero_of_right Finsupp.cons_ne_zero_of_right
theorem cons_ne_zero_iff : cons y s ≠ 0 ↔ y ≠ 0 ∨ s ≠ 0 := by
refine' ⟨fun h => _, fun h => h.casesOn cons_ne_zero_of_left cons_ne_zero_of_right⟩
| refine' imp_iff_not_or.1 fun h' c => h _ | theorem cons_ne_zero_iff : cons y s ≠ 0 ↔ y ≠ 0 ∨ s ≠ 0 := by
refine' ⟨fun h => _, fun h => h.casesOn cons_ne_zero_of_left cons_ne_zero_of_right⟩
| Mathlib.Data.Finsupp.Fin.89_0.Ry6yGz0hTElIyP3 | theorem cons_ne_zero_iff : cons y s ≠ 0 ↔ y ≠ 0 ∨ s ≠ 0 | Mathlib_Data_Finsupp_Fin |
n : ℕ
i : Fin n
M : Type u_1
inst✝ : Zero M
y : M
t : Fin (n + 1) →₀ M
s : Fin n →₀ M
h : cons y s ≠ 0
h' : y = 0
c : s = 0
⊢ cons y s = 0 | /-
Copyright (c) 2021 Ivan Sadofschi Costa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ivan Sadofschi Costa
-/
import Mathlib.Data.Finsupp.Defs
#align_import data.finsupp.fin from "leanprover-community/mathlib"@"f7fc89d5d5ff1db2d1242c7bb0e9062ce47ef47c"
/-!
# `cons` and `tail` for maps `Fin n →₀ M`
We interpret maps `Fin n →₀ M` as `n`-tuples of elements of `M`,
We define the following operations:
* `Finsupp.tail` : the tail of a map `Fin (n + 1) →₀ M`, i.e., its last `n` entries;
* `Finsupp.cons` : adding an element at the beginning of an `n`-tuple, to get an `n + 1`-tuple;
In this context, we prove some usual properties of `tail` and `cons`, analogous to those of
`Data.Fin.Tuple.Basic`.
-/
noncomputable section
namespace Finsupp
variable {n : ℕ} (i : Fin n) {M : Type*} [Zero M] (y : M) (t : Fin (n + 1) →₀ M) (s : Fin n →₀ M)
/-- `tail` for maps `Fin (n + 1) →₀ M`. See `Fin.tail` for more details. -/
def tail (s : Fin (n + 1) →₀ M) : Fin n →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.tail s)
#align finsupp.tail Finsupp.tail
/-- `cons` for maps `Fin n →₀ M`. See `Fin.cons` for more details. -/
def cons (y : M) (s : Fin n →₀ M) : Fin (n + 1) →₀ M :=
Finsupp.equivFunOnFinite.symm (Fin.cons y s : Fin (n + 1) → M)
#align finsupp.cons Finsupp.cons
theorem tail_apply : tail t i = t i.succ :=
rfl
#align finsupp.tail_apply Finsupp.tail_apply
@[simp]
theorem cons_zero : cons y s 0 = y :=
rfl
#align finsupp.cons_zero Finsupp.cons_zero
@[simp]
theorem cons_succ : cons y s i.succ = s i :=
-- porting notes: was Fin.cons_succ _ _ _
rfl
#align finsupp.cons_succ Finsupp.cons_succ
@[simp]
theorem tail_cons : tail (cons y s) = s :=
ext fun k => by simp only [tail_apply, cons_succ]
#align finsupp.tail_cons Finsupp.tail_cons
@[simp]
theorem cons_tail : cons (t 0) (tail t) = t := by
ext a
by_cases c_a : a = 0
· rw [c_a, cons_zero]
· rw [← Fin.succ_pred a c_a, cons_succ, ← tail_apply]
#align finsupp.cons_tail Finsupp.cons_tail
@[simp]
theorem cons_zero_zero : cons 0 (0 : Fin n →₀ M) = 0 := by
ext a
by_cases c : a = 0
· simp [c]
· rw [← Fin.succ_pred a c, cons_succ]
simp
#align finsupp.cons_zero_zero Finsupp.cons_zero_zero
variable {s} {y}
theorem cons_ne_zero_of_left (h : y ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
rw [← cons_zero y s, c, Finsupp.coe_zero, Pi.zero_apply]
#align finsupp.cons_ne_zero_of_left Finsupp.cons_ne_zero_of_left
theorem cons_ne_zero_of_right (h : s ≠ 0) : cons y s ≠ 0 := by
contrapose! h with c
ext a
simp [← cons_succ a y s, c]
#align finsupp.cons_ne_zero_of_right Finsupp.cons_ne_zero_of_right
theorem cons_ne_zero_iff : cons y s ≠ 0 ↔ y ≠ 0 ∨ s ≠ 0 := by
refine' ⟨fun h => _, fun h => h.casesOn cons_ne_zero_of_left cons_ne_zero_of_right⟩
refine' imp_iff_not_or.1 fun h' c => h _
| rw [h', c, Finsupp.cons_zero_zero] | theorem cons_ne_zero_iff : cons y s ≠ 0 ↔ y ≠ 0 ∨ s ≠ 0 := by
refine' ⟨fun h => _, fun h => h.casesOn cons_ne_zero_of_left cons_ne_zero_of_right⟩
refine' imp_iff_not_or.1 fun h' c => h _
| Mathlib.Data.Finsupp.Fin.89_0.Ry6yGz0hTElIyP3 | theorem cons_ne_zero_iff : cons y s ≠ 0 ↔ y ≠ 0 ∨ s ≠ 0 | Mathlib_Data_Finsupp_Fin |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
⊢ TFAE
[x ⤳ y, pure x ≤ 𝓝 y, ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s, ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s,
y ∈ closure {x}, closure {y} ⊆ closure {x}, ClusterPt y (pure x)] | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
| tfae_have 1 → 2 | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
case tfae_1_to_2
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
⊢ x ⤳ y → pure x ≤ 𝓝 y | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· | exact (pure_le_nhds _).trans | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· | Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
⊢ TFAE
[x ⤳ y, pure x ≤ 𝓝 y, ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s, ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s,
y ∈ closure {x}, closure {y} ⊆ closure {x}, ClusterPt y (pure x)] | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
| tfae_have 2 → 3 | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
case tfae_2_to_3
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
⊢ pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· | exact fun h s hso hy => h (hso.mem_nhds hy) | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· | Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
⊢ TFAE
[x ⤳ y, pure x ≤ 𝓝 y, ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s, ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s,
y ∈ closure {x}, closure {y} ⊆ closure {x}, ClusterPt y (pure x)] | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
| tfae_have 3 → 4 | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
case tfae_3_to_4
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
⊢ (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· | exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· | Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
⊢ TFAE
[x ⤳ y, pure x ≤ 𝓝 y, ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s, ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s,
y ∈ closure {x}, closure {y} ⊆ closure {x}, ClusterPt y (pure x)] | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
| tfae_have 4 → 5 | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
case tfae_4_to_5
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
⊢ (∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) → y ∈ closure {x} | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· | exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _) | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· | Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
tfae_4_to_5 : (∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) → y ∈ closure {x}
⊢ TFAE
[x ⤳ y, pure x ≤ 𝓝 y, ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s, ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s,
y ∈ closure {x}, closure {y} ⊆ closure {x}, ClusterPt y (pure x)] | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
| tfae_have 6 ↔ 5 | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
case tfae_6_iff_5
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
tfae_4_to_5 : (∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) → y ∈ closure {x}
⊢ closure {y} ⊆ closure {x} ↔ y ∈ closure {x} | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· | exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· | Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
tfae_4_to_5 : (∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) → y ∈ closure {x}
tfae_6_iff_5 : closure {y} ⊆ closure {x} ↔ y ∈ closure {x}
⊢ TFAE
[x ⤳ y, pure x ≤ 𝓝 y, ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s, ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s,
y ∈ closure {x}, closure {y} ⊆ closure {x}, ClusterPt y (pure x)] | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
| tfae_have 5 ↔ 7 | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
case tfae_5_iff_7
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
tfae_4_to_5 : (∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) → y ∈ closure {x}
tfae_6_iff_5 : closure {y} ⊆ closure {x} ↔ y ∈ closure {x}
⊢ y ∈ closure {x} ↔ ClusterPt y (pure x) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· | rw [mem_closure_iff_clusterPt, principal_singleton] | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· | Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
tfae_4_to_5 : (∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) → y ∈ closure {x}
tfae_6_iff_5 : closure {y} ⊆ closure {x} ↔ y ∈ closure {x}
tfae_5_iff_7 : y ∈ closure {x} ↔ ClusterPt y (pure x)
⊢ TFAE
[x ⤳ y, pure x ≤ 𝓝 y, ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s, ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s,
y ∈ closure {x}, closure {y} ⊆ closure {x}, ClusterPt y (pure x)] | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
| tfae_have 5 → 1 | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
case tfae_5_to_1
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
tfae_4_to_5 : (∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) → y ∈ closure {x}
tfae_6_iff_5 : closure {y} ⊆ closure {x} ↔ y ∈ closure {x}
tfae_5_iff_7 : y ∈ closure {x} ↔ ClusterPt y (pure x)
⊢ y ∈ closure {x} → x ⤳ y | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· | refine' fun h => (nhds_basis_opens _).ge_iff.2 _ | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· | Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
case tfae_5_to_1
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
tfae_4_to_5 : (∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) → y ∈ closure {x}
tfae_6_iff_5 : closure {y} ⊆ closure {x} ↔ y ∈ closure {x}
tfae_5_iff_7 : y ∈ closure {x} ↔ ClusterPt y (pure x)
h : y ∈ closure {x}
⊢ ∀ (i' : Set X), y ∈ i' ∧ IsOpen i' → i' ∈ 𝓝 x | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
| rintro s ⟨hy, ho⟩ | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
case tfae_5_to_1.intro
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s✝ : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
tfae_4_to_5 : (∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) → y ∈ closure {x}
tfae_6_iff_5 : closure {y} ⊆ closure {x} ↔ y ∈ closure {x}
tfae_5_iff_7 : y ∈ closure {x} ↔ ClusterPt y (pure x)
h : y ∈ closure {x}
s : Set X
hy : y ∈ s
ho : IsOpen s
⊢ s ∈ 𝓝 x | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
| rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩ | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
case tfae_5_to_1.intro.intro.intro
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y✝ z✝ : X
s✝ : Set X
f g : X → Y
y : X
s : Set X
hy : y ∈ s
ho : IsOpen s
z : X
hxs : z ∈ s
tfae_1_to_2 : z ⤳ y → pure z ≤ 𝓝 y
tfae_2_to_3 : pure z ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → z ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → z ∈ s) → ∀ (s : Set X), IsClosed s → z ∈ s → y ∈ s
tfae_4_to_5 : (∀ (s : Set X), IsClosed s → z ∈ s → y ∈ s) → y ∈ closure {z}
tfae_6_iff_5 : closure {y} ⊆ closure {z} ↔ y ∈ closure {z}
tfae_5_iff_7 : y ∈ closure {z} ↔ ClusterPt y (pure z)
h : y ∈ closure {z}
⊢ s ∈ 𝓝 z | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
| exact ho.mem_nhds hxs | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
x y : X
tfae_1_to_2 : x ⤳ y → pure x ≤ 𝓝 y
tfae_2_to_3 : pure x ≤ 𝓝 y → ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s
tfae_3_to_4 : (∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) → ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s
tfae_4_to_5 : (∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) → y ∈ closure {x}
tfae_6_iff_5 : closure {y} ⊆ closure {x} ↔ y ∈ closure {x}
tfae_5_iff_7 : y ∈ closure {x} ↔ ClusterPt y (pure x)
tfae_5_to_1 : y ∈ closure {x} → x ⤳ y
⊢ TFAE
[x ⤳ y, pure x ≤ 𝓝 y, ∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s, ∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s,
y ∈ closure {x}, closure {y} ⊆ closure {x}, ClusterPt y (pure x)] | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
| tfae_finish | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
| Mathlib.Topology.Inseparable.67_0.2NeLzt0mQ64QlfB | /-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ ker (𝓝 x) = {y | y ⤳ x} | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
| ext | theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
| Mathlib.Topology.Inseparable.111_0.2NeLzt0mQ64QlfB | theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} | Mathlib_Topology_Inseparable |
case h
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
x✝ : X
⊢ x✝ ∈ ker (𝓝 x) ↔ x✝ ∈ {y | y ⤳ x} | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; | simp [specializes_iff_pure, le_def] | theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; | Mathlib.Topology.Inseparable.111_0.2NeLzt0mQ64QlfB | theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
hf : Inducing f
⊢ f x ⤳ f y ↔ x ⤳ y | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
| simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage] | theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
| Mathlib.Topology.Inseparable.195_0.2NeLzt0mQ64QlfB | theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
x₁ x₂ : X
y₁ y₂ : Y
⊢ (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
| simp only [Specializes, nhds_prod_eq, prod_le_prod] | @[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
| Mathlib.Topology.Inseparable.204_0.2NeLzt0mQ64QlfB | @[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f✝ g✝ : X → Y
f g : (i : ι) → π i
⊢ f ⤳ g ↔ ∀ (i : ι), f i ⤳ g i | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
| simp only [Specializes, nhds_pi, pi_le_pi] | @[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
| Mathlib.Topology.Inseparable.214_0.2NeLzt0mQ64QlfB | @[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ ¬x ⤳ y ↔ ∃ S, IsOpen S ∧ y ∈ S ∧ x ∉ S | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
| rw [specializes_iff_forall_open] | theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
| Mathlib.Topology.Inseparable.219_0.2NeLzt0mQ64QlfB | theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ (¬∀ (s : Set X), IsOpen s → y ∈ s → x ∈ s) ↔ ∃ S, IsOpen S ∧ y ∈ S ∧ x ∉ S | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
| push_neg | theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
| Mathlib.Topology.Inseparable.219_0.2NeLzt0mQ64QlfB | theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ (∃ s, IsOpen s ∧ y ∈ s ∧ x ∉ s) ↔ ∃ S, IsOpen S ∧ y ∈ S ∧ x ∉ S | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
| rfl | theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
| Mathlib.Topology.Inseparable.219_0.2NeLzt0mQ64QlfB | theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ ¬x ⤳ y ↔ ∃ S, IsClosed S ∧ x ∈ S ∧ y ∉ S | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
| rw [specializes_iff_forall_closed] | theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
| Mathlib.Topology.Inseparable.225_0.2NeLzt0mQ64QlfB | theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ (¬∀ (s : Set X), IsClosed s → x ∈ s → y ∈ s) ↔ ∃ S, IsClosed S ∧ x ∈ S ∧ y ∉ S | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
| push_neg | theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
| Mathlib.Topology.Inseparable.225_0.2NeLzt0mQ64QlfB | theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ (∃ s, IsClosed s ∧ x ∈ s ∧ y ∉ s) ↔ ∃ S, IsClosed S ∧ x ∈ S ∧ y ∉ S | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
| rfl | theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
| Mathlib.Topology.Inseparable.225_0.2NeLzt0mQ64QlfB | theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : TopologicalSpace X
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Z
inst✝¹ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
inst✝ : DecidablePred fun x => x ∈ s
hs : IsOpen s
hf : Continuous f
hg : Continuous g
hspec : ∀ (x : X), f x ⤳ g x
⊢ Continuous (piecewise s f g) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
| have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx | theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
| Mathlib.Topology.Inseparable.231_0.2NeLzt0mQ64QlfB | theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : TopologicalSpace X
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Z
inst✝¹ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
inst✝ : DecidablePred fun x => x ∈ s
hs : IsOpen s
hf : Continuous f
hg : Continuous g
hspec : ∀ (x : X), f x ⤳ g x
this : ∀ (U : Set Y), IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U
⊢ Continuous (piecewise s f g) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
| rw [continuous_def] | theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
| Mathlib.Topology.Inseparable.231_0.2NeLzt0mQ64QlfB | theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : TopologicalSpace X
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Z
inst✝¹ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
inst✝ : DecidablePred fun x => x ∈ s
hs : IsOpen s
hf : Continuous f
hg : Continuous g
hspec : ∀ (x : X), f x ⤳ g x
this : ∀ (U : Set Y), IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U
⊢ ∀ (s_1 : Set Y), IsOpen s_1 → IsOpen (piecewise s f g ⁻¹' s_1) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
| intro U hU | theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
| Mathlib.Topology.Inseparable.231_0.2NeLzt0mQ64QlfB | theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : TopologicalSpace X
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Z
inst✝¹ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
inst✝ : DecidablePred fun x => x ∈ s
hs : IsOpen s
hf : Continuous f
hg : Continuous g
hspec : ∀ (x : X), f x ⤳ g x
this : ∀ (U : Set Y), IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U
U : Set Y
hU : IsOpen U
⊢ IsOpen (piecewise s f g ⁻¹' U) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
| rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)] | theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
| Mathlib.Topology.Inseparable.231_0.2NeLzt0mQ64QlfB | theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : TopologicalSpace X
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Z
inst✝¹ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
inst✝ : DecidablePred fun x => x ∈ s
hs : IsOpen s
hf : Continuous f
hg : Continuous g
hspec : ∀ (x : X), f x ⤳ g x
this : ∀ (U : Set Y), IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U
U : Set Y
hU : IsOpen U
⊢ IsOpen (f ⁻¹' U ∩ s ∪ g ⁻¹' U) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
| exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg) | theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
| Mathlib.Topology.Inseparable.231_0.2NeLzt0mQ64QlfB | theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝⁴ : TopologicalSpace X
inst✝³ : TopologicalSpace Y
inst✝² : TopologicalSpace Z
inst✝¹ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
inst✝ : DecidablePred fun x => x ∈ s
hs : IsClosed s
hf : Continuous f
hg : Continuous g
hspec : ∀ (x : X), g x ⤳ f x
⊢ Continuous (piecewise s f g) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
| simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec | theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
| Mathlib.Topology.Inseparable.240_0.2NeLzt0mQ64QlfB | theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ (x ~ᵢ y) ↔ ∀ (s : Set X), IsOpen s → (x ∈ s ↔ y ∈ s) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
| simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm] | theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
| Mathlib.Topology.Inseparable.299_0.2NeLzt0mQ64QlfB | theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ ¬(x ~ᵢ y) ↔ ∃ s, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
| simp [inseparable_iff_forall_open, ← xor_iff_not_iff] | theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
| Mathlib.Topology.Inseparable.304_0.2NeLzt0mQ64QlfB | theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ (x ~ᵢ y) ↔ ∀ (s : Set X), IsClosed s → (x ∈ s ↔ y ∈ s) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
| simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def] | theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
| Mathlib.Topology.Inseparable.309_0.2NeLzt0mQ64QlfB | theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ x ⤳ y ∧ y ⤳ x ↔ x ∈ closure {y} ∧ y ∈ closure {x} | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def]
#align inseparable_iff_forall_closed inseparable_iff_forall_closed
theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by | simp only [specializes_iff_mem_closure, and_comm] | theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by | Mathlib.Topology.Inseparable.314_0.2NeLzt0mQ64QlfB | theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
⊢ (x ~ᵢ y) ↔ closure {x} = closure {y} | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def]
#align inseparable_iff_forall_closed inseparable_iff_forall_closed
theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by simp only [specializes_iff_mem_closure, and_comm]
#align inseparable_iff_mem_closure inseparable_iff_mem_closure
theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} := by
| simp only [inseparable_iff_specializes_and, specializes_iff_closure_subset, ← subset_antisymm_iff,
eq_comm] | theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} := by
| Mathlib.Topology.Inseparable.319_0.2NeLzt0mQ64QlfB | theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
hf : Inducing f
⊢ (f x ~ᵢ f y) ↔ (x ~ᵢ y) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def]
#align inseparable_iff_forall_closed inseparable_iff_forall_closed
theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by simp only [specializes_iff_mem_closure, and_comm]
#align inseparable_iff_mem_closure inseparable_iff_mem_closure
theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} := by
simp only [inseparable_iff_specializes_and, specializes_iff_closure_subset, ← subset_antisymm_iff,
eq_comm]
#align inseparable_iff_closure_eq inseparable_iff_closure_eq
theorem inseparable_of_nhdsWithin_eq (hx : x ∈ s) (hy : y ∈ s) (h : 𝓝[s] x = 𝓝[s] y) : x ~ᵢ y :=
(specializes_of_nhdsWithin h.le hx).antisymm (specializes_of_nhdsWithin h.ge hy)
#align inseparable_of_nhds_within_eq inseparable_of_nhdsWithin_eq
theorem Inducing.inseparable_iff (hf : Inducing f) : (f x ~ᵢ f y) ↔ (x ~ᵢ y) := by
| simp only [inseparable_iff_specializes_and, hf.specializes_iff] | theorem Inducing.inseparable_iff (hf : Inducing f) : (f x ~ᵢ f y) ↔ (x ~ᵢ y) := by
| Mathlib.Topology.Inseparable.328_0.2NeLzt0mQ64QlfB | theorem Inducing.inseparable_iff (hf : Inducing f) : (f x ~ᵢ f y) ↔ (x ~ᵢ y) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
x₁ x₂ : X
y₁ y₂ : Y
⊢ ((x₁, y₁) ~ᵢ (x₂, y₂)) ↔ (x₁ ~ᵢ x₂) ∧ (y₁ ~ᵢ y₂) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def]
#align inseparable_iff_forall_closed inseparable_iff_forall_closed
theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by simp only [specializes_iff_mem_closure, and_comm]
#align inseparable_iff_mem_closure inseparable_iff_mem_closure
theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} := by
simp only [inseparable_iff_specializes_and, specializes_iff_closure_subset, ← subset_antisymm_iff,
eq_comm]
#align inseparable_iff_closure_eq inseparable_iff_closure_eq
theorem inseparable_of_nhdsWithin_eq (hx : x ∈ s) (hy : y ∈ s) (h : 𝓝[s] x = 𝓝[s] y) : x ~ᵢ y :=
(specializes_of_nhdsWithin h.le hx).antisymm (specializes_of_nhdsWithin h.ge hy)
#align inseparable_of_nhds_within_eq inseparable_of_nhdsWithin_eq
theorem Inducing.inseparable_iff (hf : Inducing f) : (f x ~ᵢ f y) ↔ (x ~ᵢ y) := by
simp only [inseparable_iff_specializes_and, hf.specializes_iff]
#align inducing.inseparable_iff Inducing.inseparable_iff
theorem subtype_inseparable_iff {p : X → Prop} (x y : Subtype p) : (x ~ᵢ y) ↔ ((x : X) ~ᵢ y) :=
inducing_subtype_val.inseparable_iff.symm
#align subtype_inseparable_iff subtype_inseparable_iff
@[simp] theorem inseparable_prod {x₁ x₂ : X} {y₁ y₂ : Y} :
((x₁, y₁) ~ᵢ (x₂, y₂)) ↔ (x₁ ~ᵢ x₂) ∧ (y₁ ~ᵢ y₂) := by
| simp only [Inseparable, nhds_prod_eq, prod_inj] | @[simp] theorem inseparable_prod {x₁ x₂ : X} {y₁ y₂ : Y} :
((x₁, y₁) ~ᵢ (x₂, y₂)) ↔ (x₁ ~ᵢ x₂) ∧ (y₁ ~ᵢ y₂) := by
| Mathlib.Topology.Inseparable.336_0.2NeLzt0mQ64QlfB | @[simp] theorem inseparable_prod {x₁ x₂ : X} {y₁ y₂ : Y} :
((x₁, y₁) ~ᵢ (x₂, y₂)) ↔ (x₁ ~ᵢ x₂) ∧ (y₁ ~ᵢ y₂) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f✝ g✝ : X → Y
f g : (i : ι) → π i
⊢ (f ~ᵢ g) ↔ ∀ (i : ι), f i ~ᵢ g i | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def]
#align inseparable_iff_forall_closed inseparable_iff_forall_closed
theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by simp only [specializes_iff_mem_closure, and_comm]
#align inseparable_iff_mem_closure inseparable_iff_mem_closure
theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} := by
simp only [inseparable_iff_specializes_and, specializes_iff_closure_subset, ← subset_antisymm_iff,
eq_comm]
#align inseparable_iff_closure_eq inseparable_iff_closure_eq
theorem inseparable_of_nhdsWithin_eq (hx : x ∈ s) (hy : y ∈ s) (h : 𝓝[s] x = 𝓝[s] y) : x ~ᵢ y :=
(specializes_of_nhdsWithin h.le hx).antisymm (specializes_of_nhdsWithin h.ge hy)
#align inseparable_of_nhds_within_eq inseparable_of_nhdsWithin_eq
theorem Inducing.inseparable_iff (hf : Inducing f) : (f x ~ᵢ f y) ↔ (x ~ᵢ y) := by
simp only [inseparable_iff_specializes_and, hf.specializes_iff]
#align inducing.inseparable_iff Inducing.inseparable_iff
theorem subtype_inseparable_iff {p : X → Prop} (x y : Subtype p) : (x ~ᵢ y) ↔ ((x : X) ~ᵢ y) :=
inducing_subtype_val.inseparable_iff.symm
#align subtype_inseparable_iff subtype_inseparable_iff
@[simp] theorem inseparable_prod {x₁ x₂ : X} {y₁ y₂ : Y} :
((x₁, y₁) ~ᵢ (x₂, y₂)) ↔ (x₁ ~ᵢ x₂) ∧ (y₁ ~ᵢ y₂) := by
simp only [Inseparable, nhds_prod_eq, prod_inj]
#align inseparable_prod inseparable_prod
theorem Inseparable.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ~ᵢ x₂) (hy : y₁ ~ᵢ y₂) :
(x₁, y₁) ~ᵢ (x₂, y₂) :=
inseparable_prod.2 ⟨hx, hy⟩
#align inseparable.prod Inseparable.prod
@[simp]
theorem inseparable_pi {f g : ∀ i, π i} : (f ~ᵢ g) ↔ ∀ i, f i ~ᵢ g i := by
| simp only [Inseparable, nhds_pi, funext_iff, pi_inj] | @[simp]
theorem inseparable_pi {f g : ∀ i, π i} : (f ~ᵢ g) ↔ ∀ i, f i ~ᵢ g i := by
| Mathlib.Topology.Inseparable.346_0.2NeLzt0mQ64QlfB | @[simp]
theorem inseparable_pi {f g : ∀ i, π i} : (f ~ᵢ g) ↔ ∀ i, f i ~ᵢ g i | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
t : Set (SeparationQuotient X)
hs : IsOpen s
⊢ mk ⁻¹' (mk '' s) = s | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def]
#align inseparable_iff_forall_closed inseparable_iff_forall_closed
theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by simp only [specializes_iff_mem_closure, and_comm]
#align inseparable_iff_mem_closure inseparable_iff_mem_closure
theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} := by
simp only [inseparable_iff_specializes_and, specializes_iff_closure_subset, ← subset_antisymm_iff,
eq_comm]
#align inseparable_iff_closure_eq inseparable_iff_closure_eq
theorem inseparable_of_nhdsWithin_eq (hx : x ∈ s) (hy : y ∈ s) (h : 𝓝[s] x = 𝓝[s] y) : x ~ᵢ y :=
(specializes_of_nhdsWithin h.le hx).antisymm (specializes_of_nhdsWithin h.ge hy)
#align inseparable_of_nhds_within_eq inseparable_of_nhdsWithin_eq
theorem Inducing.inseparable_iff (hf : Inducing f) : (f x ~ᵢ f y) ↔ (x ~ᵢ y) := by
simp only [inseparable_iff_specializes_and, hf.specializes_iff]
#align inducing.inseparable_iff Inducing.inseparable_iff
theorem subtype_inseparable_iff {p : X → Prop} (x y : Subtype p) : (x ~ᵢ y) ↔ ((x : X) ~ᵢ y) :=
inducing_subtype_val.inseparable_iff.symm
#align subtype_inseparable_iff subtype_inseparable_iff
@[simp] theorem inseparable_prod {x₁ x₂ : X} {y₁ y₂ : Y} :
((x₁, y₁) ~ᵢ (x₂, y₂)) ↔ (x₁ ~ᵢ x₂) ∧ (y₁ ~ᵢ y₂) := by
simp only [Inseparable, nhds_prod_eq, prod_inj]
#align inseparable_prod inseparable_prod
theorem Inseparable.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ~ᵢ x₂) (hy : y₁ ~ᵢ y₂) :
(x₁, y₁) ~ᵢ (x₂, y₂) :=
inseparable_prod.2 ⟨hx, hy⟩
#align inseparable.prod Inseparable.prod
@[simp]
theorem inseparable_pi {f g : ∀ i, π i} : (f ~ᵢ g) ↔ ∀ i, f i ~ᵢ g i := by
simp only [Inseparable, nhds_pi, funext_iff, pi_inj]
#align inseparable_pi inseparable_pi
namespace Inseparable
@[refl]
theorem refl (x : X) : x ~ᵢ x :=
Eq.refl (𝓝 x)
#align inseparable.refl Inseparable.refl
theorem rfl : x ~ᵢ x :=
refl x
#align inseparable.rfl Inseparable.rfl
theorem of_eq (e : x = y) : Inseparable x y :=
e ▸ refl x
#align inseparable.of_eq Inseparable.of_eq
@[symm]
nonrec theorem symm (h : x ~ᵢ y) : y ~ᵢ x := h.symm
#align inseparable.symm Inseparable.symm
@[trans]
nonrec theorem trans (h₁ : x ~ᵢ y) (h₂ : y ~ᵢ z) : x ~ᵢ z := h₁.trans h₂
#align inseparable.trans Inseparable.trans
theorem nhds_eq (h : x ~ᵢ y) : 𝓝 x = 𝓝 y := h
#align inseparable.nhds_eq Inseparable.nhds_eq
theorem mem_open_iff (h : x ~ᵢ y) (hs : IsOpen s) : x ∈ s ↔ y ∈ s :=
inseparable_iff_forall_open.1 h s hs
#align inseparable.mem_open_iff Inseparable.mem_open_iff
theorem mem_closed_iff (h : x ~ᵢ y) (hs : IsClosed s) : x ∈ s ↔ y ∈ s :=
inseparable_iff_forall_closed.1 h s hs
#align inseparable.mem_closed_iff Inseparable.mem_closed_iff
theorem map_of_continuousAt (h : x ~ᵢ y) (hx : ContinuousAt f x) (hy : ContinuousAt f y) :
f x ~ᵢ f y :=
(h.specializes.map_of_continuousAt hy).antisymm (h.specializes'.map_of_continuousAt hx)
#align inseparable.map_of_continuous_at Inseparable.map_of_continuousAt
theorem map (h : x ~ᵢ y) (hf : Continuous f) : f x ~ᵢ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt hf.rst.imntinuousAt
#align inseparable.map Inseparable.map
end Inseparable
theorem IsClosed.not_inseparable (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬(x ~ᵢ y) := fun h =>
hy <| (h.mem_closed_iff hs).1 hx
#align is_closed.not_inseparable IsClosed.not_inseparable
theorem IsOpen.not_inseparable (hs : IsOpen s) (hx : x ∈ s) (hy : y ∉ s) : ¬(x ~ᵢ y) := fun h =>
hy <| (h.mem_open_iff hs).1 hx
#align is_open.not_inseparable IsOpen.not_inseparable
/-!
### Separation quotient
In this section we define the quotient of a topological space by the `Inseparable` relation.
-/
variable (X)
/-- A `setoid` version of `Inseparable`, used to define the `SeparationQuotient`. -/
def inseparableSetoid : Setoid X := { Setoid.comap 𝓝 ⊥ with r := Inseparable }
#align inseparable_setoid inseparableSetoid
/-- The quotient of a topological space by its `inseparableSetoid`. This quotient is guaranteed to
be a T₀ space. -/
def SeparationQuotient := Quotient (inseparableSetoid X)
#align separation_quotient SeparationQuotient
instance : TopologicalSpace (SeparationQuotient X) := instTopologicalSpaceQuotient
variable {X}
variable {t : Set (SeparationQuotient X)}
namespace SeparationQuotient
/-- The natural map from a topological space to its separation quotient. -/
def mk : X → SeparationQuotient X := Quotient.mk''
#align separation_quotient.mk SeparationQuotient.mk
theorem quotientMap_mk : QuotientMap (mk : X → SeparationQuotient X) :=
quotientMap_quot_mk
#align separation_quotient.quotient_map_mk SeparationQuotient.quotientMap_mk
theorem continuous_mk : Continuous (mk : X → SeparationQuotient X) :=
continuous_quot_mk
#align separation_quotient.continuous_mk SeparationQuotient.continuous_mk
@[simp]
theorem mk_eq_mk : mk x = mk y ↔ (x ~ᵢ y) :=
Quotient.eq''
#align separation_quotient.mk_eq_mk SeparationQuotient.mk_eq_mk
theorem surjective_mk : Surjective (mk : X → SeparationQuotient X) :=
surjective_quot_mk _
#align separation_quotient.surjective_mk SeparationQuotient.surjective_mk
@[simp]
theorem range_mk : range (mk : X → SeparationQuotient X) = univ :=
surjective_mk.range_eq
#align separation_quotient.range_mk SeparationQuotient.range_mk
instance [Nonempty X] : Nonempty (SeparationQuotient X) :=
Nonempty.map mk ‹_›
instance [Inhabited X] : Inhabited (SeparationQuotient X) :=
⟨mk default⟩
instance [Subsingleton X] : Subsingleton (SeparationQuotient X) :=
surjective_mk.subsingleton
theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s := by
| refine' Subset.antisymm _ (subset_preimage_image _ _) | theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s := by
| Mathlib.Topology.Inseparable.464_0.2NeLzt0mQ64QlfB | theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
t : Set (SeparationQuotient X)
hs : IsOpen s
⊢ mk ⁻¹' (mk '' s) ⊆ s | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def]
#align inseparable_iff_forall_closed inseparable_iff_forall_closed
theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by simp only [specializes_iff_mem_closure, and_comm]
#align inseparable_iff_mem_closure inseparable_iff_mem_closure
theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} := by
simp only [inseparable_iff_specializes_and, specializes_iff_closure_subset, ← subset_antisymm_iff,
eq_comm]
#align inseparable_iff_closure_eq inseparable_iff_closure_eq
theorem inseparable_of_nhdsWithin_eq (hx : x ∈ s) (hy : y ∈ s) (h : 𝓝[s] x = 𝓝[s] y) : x ~ᵢ y :=
(specializes_of_nhdsWithin h.le hx).antisymm (specializes_of_nhdsWithin h.ge hy)
#align inseparable_of_nhds_within_eq inseparable_of_nhdsWithin_eq
theorem Inducing.inseparable_iff (hf : Inducing f) : (f x ~ᵢ f y) ↔ (x ~ᵢ y) := by
simp only [inseparable_iff_specializes_and, hf.specializes_iff]
#align inducing.inseparable_iff Inducing.inseparable_iff
theorem subtype_inseparable_iff {p : X → Prop} (x y : Subtype p) : (x ~ᵢ y) ↔ ((x : X) ~ᵢ y) :=
inducing_subtype_val.inseparable_iff.symm
#align subtype_inseparable_iff subtype_inseparable_iff
@[simp] theorem inseparable_prod {x₁ x₂ : X} {y₁ y₂ : Y} :
((x₁, y₁) ~ᵢ (x₂, y₂)) ↔ (x₁ ~ᵢ x₂) ∧ (y₁ ~ᵢ y₂) := by
simp only [Inseparable, nhds_prod_eq, prod_inj]
#align inseparable_prod inseparable_prod
theorem Inseparable.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ~ᵢ x₂) (hy : y₁ ~ᵢ y₂) :
(x₁, y₁) ~ᵢ (x₂, y₂) :=
inseparable_prod.2 ⟨hx, hy⟩
#align inseparable.prod Inseparable.prod
@[simp]
theorem inseparable_pi {f g : ∀ i, π i} : (f ~ᵢ g) ↔ ∀ i, f i ~ᵢ g i := by
simp only [Inseparable, nhds_pi, funext_iff, pi_inj]
#align inseparable_pi inseparable_pi
namespace Inseparable
@[refl]
theorem refl (x : X) : x ~ᵢ x :=
Eq.refl (𝓝 x)
#align inseparable.refl Inseparable.refl
theorem rfl : x ~ᵢ x :=
refl x
#align inseparable.rfl Inseparable.rfl
theorem of_eq (e : x = y) : Inseparable x y :=
e ▸ refl x
#align inseparable.of_eq Inseparable.of_eq
@[symm]
nonrec theorem symm (h : x ~ᵢ y) : y ~ᵢ x := h.symm
#align inseparable.symm Inseparable.symm
@[trans]
nonrec theorem trans (h₁ : x ~ᵢ y) (h₂ : y ~ᵢ z) : x ~ᵢ z := h₁.trans h₂
#align inseparable.trans Inseparable.trans
theorem nhds_eq (h : x ~ᵢ y) : 𝓝 x = 𝓝 y := h
#align inseparable.nhds_eq Inseparable.nhds_eq
theorem mem_open_iff (h : x ~ᵢ y) (hs : IsOpen s) : x ∈ s ↔ y ∈ s :=
inseparable_iff_forall_open.1 h s hs
#align inseparable.mem_open_iff Inseparable.mem_open_iff
theorem mem_closed_iff (h : x ~ᵢ y) (hs : IsClosed s) : x ∈ s ↔ y ∈ s :=
inseparable_iff_forall_closed.1 h s hs
#align inseparable.mem_closed_iff Inseparable.mem_closed_iff
theorem map_of_continuousAt (h : x ~ᵢ y) (hx : ContinuousAt f x) (hy : ContinuousAt f y) :
f x ~ᵢ f y :=
(h.specializes.map_of_continuousAt hy).antisymm (h.specializes'.map_of_continuousAt hx)
#align inseparable.map_of_continuous_at Inseparable.map_of_continuousAt
theorem map (h : x ~ᵢ y) (hf : Continuous f) : f x ~ᵢ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt hf.rst.imntinuousAt
#align inseparable.map Inseparable.map
end Inseparable
theorem IsClosed.not_inseparable (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬(x ~ᵢ y) := fun h =>
hy <| (h.mem_closed_iff hs).1 hx
#align is_closed.not_inseparable IsClosed.not_inseparable
theorem IsOpen.not_inseparable (hs : IsOpen s) (hx : x ∈ s) (hy : y ∉ s) : ¬(x ~ᵢ y) := fun h =>
hy <| (h.mem_open_iff hs).1 hx
#align is_open.not_inseparable IsOpen.not_inseparable
/-!
### Separation quotient
In this section we define the quotient of a topological space by the `Inseparable` relation.
-/
variable (X)
/-- A `setoid` version of `Inseparable`, used to define the `SeparationQuotient`. -/
def inseparableSetoid : Setoid X := { Setoid.comap 𝓝 ⊥ with r := Inseparable }
#align inseparable_setoid inseparableSetoid
/-- The quotient of a topological space by its `inseparableSetoid`. This quotient is guaranteed to
be a T₀ space. -/
def SeparationQuotient := Quotient (inseparableSetoid X)
#align separation_quotient SeparationQuotient
instance : TopologicalSpace (SeparationQuotient X) := instTopologicalSpaceQuotient
variable {X}
variable {t : Set (SeparationQuotient X)}
namespace SeparationQuotient
/-- The natural map from a topological space to its separation quotient. -/
def mk : X → SeparationQuotient X := Quotient.mk''
#align separation_quotient.mk SeparationQuotient.mk
theorem quotientMap_mk : QuotientMap (mk : X → SeparationQuotient X) :=
quotientMap_quot_mk
#align separation_quotient.quotient_map_mk SeparationQuotient.quotientMap_mk
theorem continuous_mk : Continuous (mk : X → SeparationQuotient X) :=
continuous_quot_mk
#align separation_quotient.continuous_mk SeparationQuotient.continuous_mk
@[simp]
theorem mk_eq_mk : mk x = mk y ↔ (x ~ᵢ y) :=
Quotient.eq''
#align separation_quotient.mk_eq_mk SeparationQuotient.mk_eq_mk
theorem surjective_mk : Surjective (mk : X → SeparationQuotient X) :=
surjective_quot_mk _
#align separation_quotient.surjective_mk SeparationQuotient.surjective_mk
@[simp]
theorem range_mk : range (mk : X → SeparationQuotient X) = univ :=
surjective_mk.range_eq
#align separation_quotient.range_mk SeparationQuotient.range_mk
instance [Nonempty X] : Nonempty (SeparationQuotient X) :=
Nonempty.map mk ‹_›
instance [Inhabited X] : Inhabited (SeparationQuotient X) :=
⟨mk default⟩
instance [Subsingleton X] : Subsingleton (SeparationQuotient X) :=
surjective_mk.subsingleton
theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s := by
refine' Subset.antisymm _ (subset_preimage_image _ _)
| rintro x ⟨y, hys, hxy⟩ | theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s := by
refine' Subset.antisymm _ (subset_preimage_image _ _)
| Mathlib.Topology.Inseparable.464_0.2NeLzt0mQ64QlfB | theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s | Mathlib_Topology_Inseparable |
case intro.intro
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x✝ y✝ z : X
s : Set X
f g : X → Y
t : Set (SeparationQuotient X)
hs : IsOpen s
x y : X
hys : y ∈ s
hxy : mk y = mk x
⊢ x ∈ s | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def]
#align inseparable_iff_forall_closed inseparable_iff_forall_closed
theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by simp only [specializes_iff_mem_closure, and_comm]
#align inseparable_iff_mem_closure inseparable_iff_mem_closure
theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} := by
simp only [inseparable_iff_specializes_and, specializes_iff_closure_subset, ← subset_antisymm_iff,
eq_comm]
#align inseparable_iff_closure_eq inseparable_iff_closure_eq
theorem inseparable_of_nhdsWithin_eq (hx : x ∈ s) (hy : y ∈ s) (h : 𝓝[s] x = 𝓝[s] y) : x ~ᵢ y :=
(specializes_of_nhdsWithin h.le hx).antisymm (specializes_of_nhdsWithin h.ge hy)
#align inseparable_of_nhds_within_eq inseparable_of_nhdsWithin_eq
theorem Inducing.inseparable_iff (hf : Inducing f) : (f x ~ᵢ f y) ↔ (x ~ᵢ y) := by
simp only [inseparable_iff_specializes_and, hf.specializes_iff]
#align inducing.inseparable_iff Inducing.inseparable_iff
theorem subtype_inseparable_iff {p : X → Prop} (x y : Subtype p) : (x ~ᵢ y) ↔ ((x : X) ~ᵢ y) :=
inducing_subtype_val.inseparable_iff.symm
#align subtype_inseparable_iff subtype_inseparable_iff
@[simp] theorem inseparable_prod {x₁ x₂ : X} {y₁ y₂ : Y} :
((x₁, y₁) ~ᵢ (x₂, y₂)) ↔ (x₁ ~ᵢ x₂) ∧ (y₁ ~ᵢ y₂) := by
simp only [Inseparable, nhds_prod_eq, prod_inj]
#align inseparable_prod inseparable_prod
theorem Inseparable.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ~ᵢ x₂) (hy : y₁ ~ᵢ y₂) :
(x₁, y₁) ~ᵢ (x₂, y₂) :=
inseparable_prod.2 ⟨hx, hy⟩
#align inseparable.prod Inseparable.prod
@[simp]
theorem inseparable_pi {f g : ∀ i, π i} : (f ~ᵢ g) ↔ ∀ i, f i ~ᵢ g i := by
simp only [Inseparable, nhds_pi, funext_iff, pi_inj]
#align inseparable_pi inseparable_pi
namespace Inseparable
@[refl]
theorem refl (x : X) : x ~ᵢ x :=
Eq.refl (𝓝 x)
#align inseparable.refl Inseparable.refl
theorem rfl : x ~ᵢ x :=
refl x
#align inseparable.rfl Inseparable.rfl
theorem of_eq (e : x = y) : Inseparable x y :=
e ▸ refl x
#align inseparable.of_eq Inseparable.of_eq
@[symm]
nonrec theorem symm (h : x ~ᵢ y) : y ~ᵢ x := h.symm
#align inseparable.symm Inseparable.symm
@[trans]
nonrec theorem trans (h₁ : x ~ᵢ y) (h₂ : y ~ᵢ z) : x ~ᵢ z := h₁.trans h₂
#align inseparable.trans Inseparable.trans
theorem nhds_eq (h : x ~ᵢ y) : 𝓝 x = 𝓝 y := h
#align inseparable.nhds_eq Inseparable.nhds_eq
theorem mem_open_iff (h : x ~ᵢ y) (hs : IsOpen s) : x ∈ s ↔ y ∈ s :=
inseparable_iff_forall_open.1 h s hs
#align inseparable.mem_open_iff Inseparable.mem_open_iff
theorem mem_closed_iff (h : x ~ᵢ y) (hs : IsClosed s) : x ∈ s ↔ y ∈ s :=
inseparable_iff_forall_closed.1 h s hs
#align inseparable.mem_closed_iff Inseparable.mem_closed_iff
theorem map_of_continuousAt (h : x ~ᵢ y) (hx : ContinuousAt f x) (hy : ContinuousAt f y) :
f x ~ᵢ f y :=
(h.specializes.map_of_continuousAt hy).antisymm (h.specializes'.map_of_continuousAt hx)
#align inseparable.map_of_continuous_at Inseparable.map_of_continuousAt
theorem map (h : x ~ᵢ y) (hf : Continuous f) : f x ~ᵢ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt hf.rst.imntinuousAt
#align inseparable.map Inseparable.map
end Inseparable
theorem IsClosed.not_inseparable (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬(x ~ᵢ y) := fun h =>
hy <| (h.mem_closed_iff hs).1 hx
#align is_closed.not_inseparable IsClosed.not_inseparable
theorem IsOpen.not_inseparable (hs : IsOpen s) (hx : x ∈ s) (hy : y ∉ s) : ¬(x ~ᵢ y) := fun h =>
hy <| (h.mem_open_iff hs).1 hx
#align is_open.not_inseparable IsOpen.not_inseparable
/-!
### Separation quotient
In this section we define the quotient of a topological space by the `Inseparable` relation.
-/
variable (X)
/-- A `setoid` version of `Inseparable`, used to define the `SeparationQuotient`. -/
def inseparableSetoid : Setoid X := { Setoid.comap 𝓝 ⊥ with r := Inseparable }
#align inseparable_setoid inseparableSetoid
/-- The quotient of a topological space by its `inseparableSetoid`. This quotient is guaranteed to
be a T₀ space. -/
def SeparationQuotient := Quotient (inseparableSetoid X)
#align separation_quotient SeparationQuotient
instance : TopologicalSpace (SeparationQuotient X) := instTopologicalSpaceQuotient
variable {X}
variable {t : Set (SeparationQuotient X)}
namespace SeparationQuotient
/-- The natural map from a topological space to its separation quotient. -/
def mk : X → SeparationQuotient X := Quotient.mk''
#align separation_quotient.mk SeparationQuotient.mk
theorem quotientMap_mk : QuotientMap (mk : X → SeparationQuotient X) :=
quotientMap_quot_mk
#align separation_quotient.quotient_map_mk SeparationQuotient.quotientMap_mk
theorem continuous_mk : Continuous (mk : X → SeparationQuotient X) :=
continuous_quot_mk
#align separation_quotient.continuous_mk SeparationQuotient.continuous_mk
@[simp]
theorem mk_eq_mk : mk x = mk y ↔ (x ~ᵢ y) :=
Quotient.eq''
#align separation_quotient.mk_eq_mk SeparationQuotient.mk_eq_mk
theorem surjective_mk : Surjective (mk : X → SeparationQuotient X) :=
surjective_quot_mk _
#align separation_quotient.surjective_mk SeparationQuotient.surjective_mk
@[simp]
theorem range_mk : range (mk : X → SeparationQuotient X) = univ :=
surjective_mk.range_eq
#align separation_quotient.range_mk SeparationQuotient.range_mk
instance [Nonempty X] : Nonempty (SeparationQuotient X) :=
Nonempty.map mk ‹_›
instance [Inhabited X] : Inhabited (SeparationQuotient X) :=
⟨mk default⟩
instance [Subsingleton X] : Subsingleton (SeparationQuotient X) :=
surjective_mk.subsingleton
theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s := by
refine' Subset.antisymm _ (subset_preimage_image _ _)
rintro x ⟨y, hys, hxy⟩
| exact ((mk_eq_mk.1 hxy).mem_open_iff hs).1 hys | theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s := by
refine' Subset.antisymm _ (subset_preimage_image _ _)
rintro x ⟨y, hys, hxy⟩
| Mathlib.Topology.Inseparable.464_0.2NeLzt0mQ64QlfB | theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s✝ : Set X
f g : X → Y
t : Set (SeparationQuotient X)
s : Set X
hs : IsOpen s
⊢ IsOpen (mk ⁻¹' (mk '' s)) | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def]
#align inseparable_iff_forall_closed inseparable_iff_forall_closed
theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by simp only [specializes_iff_mem_closure, and_comm]
#align inseparable_iff_mem_closure inseparable_iff_mem_closure
theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} := by
simp only [inseparable_iff_specializes_and, specializes_iff_closure_subset, ← subset_antisymm_iff,
eq_comm]
#align inseparable_iff_closure_eq inseparable_iff_closure_eq
theorem inseparable_of_nhdsWithin_eq (hx : x ∈ s) (hy : y ∈ s) (h : 𝓝[s] x = 𝓝[s] y) : x ~ᵢ y :=
(specializes_of_nhdsWithin h.le hx).antisymm (specializes_of_nhdsWithin h.ge hy)
#align inseparable_of_nhds_within_eq inseparable_of_nhdsWithin_eq
theorem Inducing.inseparable_iff (hf : Inducing f) : (f x ~ᵢ f y) ↔ (x ~ᵢ y) := by
simp only [inseparable_iff_specializes_and, hf.specializes_iff]
#align inducing.inseparable_iff Inducing.inseparable_iff
theorem subtype_inseparable_iff {p : X → Prop} (x y : Subtype p) : (x ~ᵢ y) ↔ ((x : X) ~ᵢ y) :=
inducing_subtype_val.inseparable_iff.symm
#align subtype_inseparable_iff subtype_inseparable_iff
@[simp] theorem inseparable_prod {x₁ x₂ : X} {y₁ y₂ : Y} :
((x₁, y₁) ~ᵢ (x₂, y₂)) ↔ (x₁ ~ᵢ x₂) ∧ (y₁ ~ᵢ y₂) := by
simp only [Inseparable, nhds_prod_eq, prod_inj]
#align inseparable_prod inseparable_prod
theorem Inseparable.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ~ᵢ x₂) (hy : y₁ ~ᵢ y₂) :
(x₁, y₁) ~ᵢ (x₂, y₂) :=
inseparable_prod.2 ⟨hx, hy⟩
#align inseparable.prod Inseparable.prod
@[simp]
theorem inseparable_pi {f g : ∀ i, π i} : (f ~ᵢ g) ↔ ∀ i, f i ~ᵢ g i := by
simp only [Inseparable, nhds_pi, funext_iff, pi_inj]
#align inseparable_pi inseparable_pi
namespace Inseparable
@[refl]
theorem refl (x : X) : x ~ᵢ x :=
Eq.refl (𝓝 x)
#align inseparable.refl Inseparable.refl
theorem rfl : x ~ᵢ x :=
refl x
#align inseparable.rfl Inseparable.rfl
theorem of_eq (e : x = y) : Inseparable x y :=
e ▸ refl x
#align inseparable.of_eq Inseparable.of_eq
@[symm]
nonrec theorem symm (h : x ~ᵢ y) : y ~ᵢ x := h.symm
#align inseparable.symm Inseparable.symm
@[trans]
nonrec theorem trans (h₁ : x ~ᵢ y) (h₂ : y ~ᵢ z) : x ~ᵢ z := h₁.trans h₂
#align inseparable.trans Inseparable.trans
theorem nhds_eq (h : x ~ᵢ y) : 𝓝 x = 𝓝 y := h
#align inseparable.nhds_eq Inseparable.nhds_eq
theorem mem_open_iff (h : x ~ᵢ y) (hs : IsOpen s) : x ∈ s ↔ y ∈ s :=
inseparable_iff_forall_open.1 h s hs
#align inseparable.mem_open_iff Inseparable.mem_open_iff
theorem mem_closed_iff (h : x ~ᵢ y) (hs : IsClosed s) : x ∈ s ↔ y ∈ s :=
inseparable_iff_forall_closed.1 h s hs
#align inseparable.mem_closed_iff Inseparable.mem_closed_iff
theorem map_of_continuousAt (h : x ~ᵢ y) (hx : ContinuousAt f x) (hy : ContinuousAt f y) :
f x ~ᵢ f y :=
(h.specializes.map_of_continuousAt hy).antisymm (h.specializes'.map_of_continuousAt hx)
#align inseparable.map_of_continuous_at Inseparable.map_of_continuousAt
theorem map (h : x ~ᵢ y) (hf : Continuous f) : f x ~ᵢ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt hf.rst.imntinuousAt
#align inseparable.map Inseparable.map
end Inseparable
theorem IsClosed.not_inseparable (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬(x ~ᵢ y) := fun h =>
hy <| (h.mem_closed_iff hs).1 hx
#align is_closed.not_inseparable IsClosed.not_inseparable
theorem IsOpen.not_inseparable (hs : IsOpen s) (hx : x ∈ s) (hy : y ∉ s) : ¬(x ~ᵢ y) := fun h =>
hy <| (h.mem_open_iff hs).1 hx
#align is_open.not_inseparable IsOpen.not_inseparable
/-!
### Separation quotient
In this section we define the quotient of a topological space by the `Inseparable` relation.
-/
variable (X)
/-- A `setoid` version of `Inseparable`, used to define the `SeparationQuotient`. -/
def inseparableSetoid : Setoid X := { Setoid.comap 𝓝 ⊥ with r := Inseparable }
#align inseparable_setoid inseparableSetoid
/-- The quotient of a topological space by its `inseparableSetoid`. This quotient is guaranteed to
be a T₀ space. -/
def SeparationQuotient := Quotient (inseparableSetoid X)
#align separation_quotient SeparationQuotient
instance : TopologicalSpace (SeparationQuotient X) := instTopologicalSpaceQuotient
variable {X}
variable {t : Set (SeparationQuotient X)}
namespace SeparationQuotient
/-- The natural map from a topological space to its separation quotient. -/
def mk : X → SeparationQuotient X := Quotient.mk''
#align separation_quotient.mk SeparationQuotient.mk
theorem quotientMap_mk : QuotientMap (mk : X → SeparationQuotient X) :=
quotientMap_quot_mk
#align separation_quotient.quotient_map_mk SeparationQuotient.quotientMap_mk
theorem continuous_mk : Continuous (mk : X → SeparationQuotient X) :=
continuous_quot_mk
#align separation_quotient.continuous_mk SeparationQuotient.continuous_mk
@[simp]
theorem mk_eq_mk : mk x = mk y ↔ (x ~ᵢ y) :=
Quotient.eq''
#align separation_quotient.mk_eq_mk SeparationQuotient.mk_eq_mk
theorem surjective_mk : Surjective (mk : X → SeparationQuotient X) :=
surjective_quot_mk _
#align separation_quotient.surjective_mk SeparationQuotient.surjective_mk
@[simp]
theorem range_mk : range (mk : X → SeparationQuotient X) = univ :=
surjective_mk.range_eq
#align separation_quotient.range_mk SeparationQuotient.range_mk
instance [Nonempty X] : Nonempty (SeparationQuotient X) :=
Nonempty.map mk ‹_›
instance [Inhabited X] : Inhabited (SeparationQuotient X) :=
⟨mk default⟩
instance [Subsingleton X] : Subsingleton (SeparationQuotient X) :=
surjective_mk.subsingleton
theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s := by
refine' Subset.antisymm _ (subset_preimage_image _ _)
rintro x ⟨y, hys, hxy⟩
exact ((mk_eq_mk.1 hxy).mem_open_iff hs).1 hys
#align separation_quotient.preimage_image_mk_open SeparationQuotient.preimage_image_mk_open
theorem isOpenMap_mk : IsOpenMap (mk : X → SeparationQuotient X) := fun s hs =>
quotientMap_mk.isOpen_preimage.1 <| by | rwa [preimage_image_mk_open hs] | theorem isOpenMap_mk : IsOpenMap (mk : X → SeparationQuotient X) := fun s hs =>
quotientMap_mk.isOpen_preimage.1 <| by | Mathlib.Topology.Inseparable.470_0.2NeLzt0mQ64QlfB | theorem isOpenMap_mk : IsOpenMap (mk : X → SeparationQuotient X) | Mathlib_Topology_Inseparable |
X : Type u_1
Y : Type u_2
Z : Type u_3
α : Type u_4
ι : Type u_5
π : ι → Type u_6
inst✝³ : TopologicalSpace X
inst✝² : TopologicalSpace Y
inst✝¹ : TopologicalSpace Z
inst✝ : (i : ι) → TopologicalSpace (π i)
x y z : X
s : Set X
f g : X → Y
t : Set (SeparationQuotient X)
hs : IsClosed s
⊢ mk ⁻¹' (mk '' s) = s | /-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang, Yury G. Kudryashov
-/
import Mathlib.Tactic.TFAE
import Mathlib.Topology.ContinuousOn
#align_import topology.inseparable from "leanprover-community/mathlib"@"bcfa726826abd57587355b4b5b7e78ad6527b7e4"
/-!
# Inseparable points in a topological space
In this file we define
* `Specializes` (notation: `x ⤳ y`) : a relation saying that `𝓝 x ≤ 𝓝 y`;
* `Inseparable`: a relation saying that two points in a topological space have the same
neighbourhoods; equivalently, they can't be separated by an open set;
* `InseparableSetoid X`: same relation, as a `Setoid`;
* `SeparationQuotient X`: the quotient of `X` by its `InseparableSetoid`.
We also prove various basic properties of the relation `Inseparable`.
## Notations
- `x ⤳ y`: notation for `Specializes x y`;
- `x ~ᵢ y` is used as a local notation for `Inseparable x y`;
- `𝓝 x` is the neighbourhoods filter `nhds x` of a point `x`, defined elsewhere.
## Tags
topological space, separation setoid
-/
open Set Filter Function Topology List
variable {X Y Z α ι : Type*} {π : ι → Type*} [TopologicalSpace X] [TopologicalSpace Y]
[TopologicalSpace Z] [∀ i, TopologicalSpace (π i)] {x y z : X} {s : Set X} {f g : X → Y}
/-!
### `Specializes` relation
-/
/-- `x` specializes to `y` (notation: `x ⤳ y`) if either of the following equivalent properties
hold:
* `𝓝 x ≤ 𝓝 y`; this property is used as the definition;
* `pure x ≤ 𝓝 y`; in other words, any neighbourhood of `y` contains `x`;
* `y ∈ closure {x}`;
* `closure {y} ⊆ closure {x}`;
* for any closed set `s` we have `x ∈ s → y ∈ s`;
* for any open set `s` we have `y ∈ s → x ∈ s`;
* `y` is a cluster point of the filter `pure x = 𝓟 {x}`.
This relation defines a `Preorder` on `X`. If `X` is a T₀ space, then this preorder is a partial
order. If `X` is a T₁ space, then this partial order is trivial : `x ⤳ y ↔ x = y`. -/
def Specializes (x y : X) : Prop := 𝓝 x ≤ 𝓝 y
#align specializes Specializes
@[inherit_doc]
infixl:300 " ⤳ " => Specializes
/-- A collection of equivalent definitions of `x ⤳ y`. The public API is given by `iff` lemmas
below. -/
theorem specializes_TFAE (x y : X) :
TFAE [x ⤳ y,
pure x ≤ 𝓝 y,
∀ s : Set X , IsOpen s → y ∈ s → x ∈ s,
∀ s : Set X , IsClosed s → x ∈ s → y ∈ s,
y ∈ closure ({ x } : Set X),
closure ({ y } : Set X) ⊆ closure { x },
ClusterPt y (pure x)] := by
tfae_have 1 → 2
· exact (pure_le_nhds _).trans
tfae_have 2 → 3
· exact fun h s hso hy => h (hso.mem_nhds hy)
tfae_have 3 → 4
· exact fun h s hsc hx => of_not_not fun hy => h sᶜ hsc.isOpen_compl hy hx
tfae_have 4 → 5
· exact fun h => h _ isClosed_closure (subset_closure <| mem_singleton _)
tfae_have 6 ↔ 5
· exact isClosed_closure.closure_subset_iff.trans singleton_subset_iff
tfae_have 5 ↔ 7
· rw [mem_closure_iff_clusterPt, principal_singleton]
tfae_have 5 → 1
· refine' fun h => (nhds_basis_opens _).ge_iff.2 _
rintro s ⟨hy, ho⟩
rcases mem_closure_iff.1 h s ho hy with ⟨z, hxs, rfl : z = x⟩
exact ho.mem_nhds hxs
tfae_finish
#align specializes_tfae specializes_TFAE
theorem specializes_iff_nhds : x ⤳ y ↔ 𝓝 x ≤ 𝓝 y :=
Iff.rfl
#align specializes_iff_nhds specializes_iff_nhds
theorem specializes_iff_pure : x ⤳ y ↔ pure x ≤ 𝓝 y :=
(specializes_TFAE x y).out 0 1
#align specializes_iff_pure specializes_iff_pure
alias ⟨Specializes.nhds_le_nhds, _⟩ := specializes_iff_nhds
#align specializes.nhds_le_nhds Specializes.nhds_le_nhds
alias ⟨Specializes.pure_le_nhds, _⟩ := specializes_iff_pure
#align specializes.pure_le_nhds Specializes.pure_le_nhds
theorem ker_nhds_eq_specializes : (𝓝 x).ker = {y | y ⤳ x} := by
ext; simp [specializes_iff_pure, le_def]
theorem specializes_iff_forall_open : x ⤳ y ↔ ∀ s : Set X, IsOpen s → y ∈ s → x ∈ s :=
(specializes_TFAE x y).out 0 2
#align specializes_iff_forall_open specializes_iff_forall_open
theorem Specializes.mem_open (h : x ⤳ y) (hs : IsOpen s) (hy : y ∈ s) : x ∈ s :=
specializes_iff_forall_open.1 h s hs hy
#align specializes.mem_open Specializes.mem_open
theorem IsOpen.not_specializes (hs : IsOpen s) (hx : x ∉ s) (hy : y ∈ s) : ¬x ⤳ y := fun h =>
hx <| h.mem_open hs hy
#align is_open.not_specializes IsOpen.not_specializes
theorem specializes_iff_forall_closed : x ⤳ y ↔ ∀ s : Set X, IsClosed s → x ∈ s → y ∈ s :=
(specializes_TFAE x y).out 0 3
#align specializes_iff_forall_closed specializes_iff_forall_closed
theorem Specializes.mem_closed (h : x ⤳ y) (hs : IsClosed s) (hx : x ∈ s) : y ∈ s :=
specializes_iff_forall_closed.1 h s hs hx
#align specializes.mem_closed Specializes.mem_closed
theorem IsClosed.not_specializes (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬x ⤳ y := fun h =>
hy <| h.mem_closed hs hx
#align is_closed.not_specializes IsClosed.not_specializes
theorem specializes_iff_mem_closure : x ⤳ y ↔ y ∈ closure ({x} : Set X) :=
(specializes_TFAE x y).out 0 4
#align specializes_iff_mem_closure specializes_iff_mem_closure
alias ⟨Specializes.mem_closure, _⟩ := specializes_iff_mem_closure
#align specializes.mem_closure Specializes.mem_closure
theorem specializes_iff_closure_subset : x ⤳ y ↔ closure ({y} : Set X) ⊆ closure {x} :=
(specializes_TFAE x y).out 0 5
#align specializes_iff_closure_subset specializes_iff_closure_subset
alias ⟨Specializes.closure_subset, _⟩ := specializes_iff_closure_subset
#align specializes.closure_subset Specializes.closure_subset
-- porting note: new lemma
theorem specializes_iff_clusterPt : x ⤳ y ↔ ClusterPt y (pure x) :=
(specializes_TFAE x y).out 0 6
theorem Filter.HasBasis.specializes_iff {ι} {p : ι → Prop} {s : ι → Set X}
(h : (𝓝 y).HasBasis p s) : x ⤳ y ↔ ∀ i, p i → x ∈ s i :=
specializes_iff_pure.trans h.ge_iff
#align filter.has_basis.specializes_iff Filter.HasBasis.specializes_iff
theorem specializes_rfl : x ⤳ x := le_rfl
#align specializes_rfl specializes_rfl
@[refl]
theorem specializes_refl (x : X) : x ⤳ x :=
specializes_rfl
#align specializes_refl specializes_refl
@[trans]
theorem Specializes.trans : x ⤳ y → y ⤳ z → x ⤳ z :=
le_trans
#align specializes.trans Specializes.trans
theorem specializes_of_eq (e : x = y) : x ⤳ y :=
e ▸ specializes_refl x
#align specializes_of_eq specializes_of_eq
theorem specializes_of_nhdsWithin (h₁ : 𝓝[s] x ≤ 𝓝[s] y) (h₂ : x ∈ s) : x ⤳ y :=
specializes_iff_pure.2 <|
calc
pure x ≤ 𝓝[s] x := le_inf (pure_le_nhds _) (le_principal_iff.2 h₂)
_ ≤ 𝓝[s] y := h₁
_ ≤ 𝓝 y := inf_le_left
#align specializes_of_nhds_within specializes_of_nhdsWithin
theorem Specializes.map_of_continuousAt (h : x ⤳ y) (hy : ContinuousAt f y) : f x ⤳ f y :=
specializes_iff_pure.2 fun _s hs =>
mem_pure.2 <| mem_preimage.1 <| mem_of_mem_nhds <| hy.mono_left h hs
#align specializes.map_of_continuous_at Specializes.map_of_continuousAt
theorem Specializes.map (h : x ⤳ y) (hf : Continuous f) : f x ⤳ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt
#align specializes.map Specializes.map
theorem Inducing.specializes_iff (hf : Inducing f) : f x ⤳ f y ↔ x ⤳ y := by
simp only [specializes_iff_mem_closure, hf.closure_eq_preimage_closure_image, image_singleton,
mem_preimage]
#align inducing.specializes_iff Inducing.specializes_iff
theorem subtype_specializes_iff {p : X → Prop} (x y : Subtype p) : x ⤳ y ↔ (x : X) ⤳ y :=
inducing_subtype_val.specializes_iff.symm
#align subtype_specializes_iff subtype_specializes_iff
@[simp]
theorem specializes_prod {x₁ x₂ : X} {y₁ y₂ : Y} : (x₁, y₁) ⤳ (x₂, y₂) ↔ x₁ ⤳ x₂ ∧ y₁ ⤳ y₂ := by
simp only [Specializes, nhds_prod_eq, prod_le_prod]
#align specializes_prod specializes_prod
theorem Specializes.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ⤳ x₂) (hy : y₁ ⤳ y₂) :
(x₁, y₁) ⤳ (x₂, y₂) :=
specializes_prod.2 ⟨hx, hy⟩
#align specializes.prod Specializes.prod
@[simp]
theorem specializes_pi {f g : ∀ i, π i} : f ⤳ g ↔ ∀ i, f i ⤳ g i := by
simp only [Specializes, nhds_pi, pi_le_pi]
#align specializes_pi specializes_pi
theorem not_specializes_iff_exists_open : ¬x ⤳ y ↔ ∃ S : Set X, IsOpen S ∧ y ∈ S ∧ x ∉ S := by
rw [specializes_iff_forall_open]
push_neg
rfl
#align not_specializes_iff_exists_open not_specializes_iff_exists_open
theorem not_specializes_iff_exists_closed : ¬x ⤳ y ↔ ∃ S : Set X, IsClosed S ∧ x ∈ S ∧ y ∉ S := by
rw [specializes_iff_forall_closed]
push_neg
rfl
#align not_specializes_iff_exists_closed not_specializes_iff_exists_closed
theorem IsOpen.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsOpen s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, f x ⤳ g x) :
Continuous (s.piecewise f g) := by
have : ∀ U, IsOpen U → g ⁻¹' U ⊆ f ⁻¹' U := fun U hU x hx ↦ (hspec x).mem_open hU hx
rw [continuous_def]
intro U hU
rw [piecewise_preimage, ite_eq_of_subset_right _ (this U hU)]
exact hU.preimage hf |>.inter hs |>.union (hU.preimage hg)
theorem IsClosed.continuous_piecewise_of_specializes [DecidablePred (· ∈ s)] (hs : IsClosed s)
(hf : Continuous f) (hg : Continuous g) (hspec : ∀ x, g x ⤳ f x) :
Continuous (s.piecewise f g) := by
simpa only [piecewise_compl] using hs.isOpen_compl.continuous_piecewise_of_specializes hg hf hspec
variable (X)
/-- Specialization forms a preorder on the topological space. -/
def specializationPreorder : Preorder X :=
{ Preorder.lift (OrderDual.toDual ∘ 𝓝) with
le := fun x y => y ⤳ x
lt := fun x y => y ⤳ x ∧ ¬x ⤳ y }
#align specialization_preorder specializationPreorder
variable {X}
/-- A continuous function is monotone with respect to the specialization preorders on the domain and
the codomain. -/
theorem Continuous.specialization_monotone (hf : Continuous f) :
@Monotone _ _ (specializationPreorder X) (specializationPreorder Y) f := fun _ _ h => h.map hf
#align continuous.specialization_monotone Continuous.specialization_monotone
/-!
### `Inseparable` relation
-/
/-- Two points `x` and `y` in a topological space are `Inseparable` if any of the following
equivalent properties hold:
- `𝓝 x = 𝓝 y`; we use this property as the definition;
- for any open set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_open`;
- for any closed set `s`, `x ∈ s ↔ y ∈ s`, see `inseparable_iff_closed`;
- `x ∈ closure {y}` and `y ∈ closure {x}`, see `inseparable_iff_mem_closure`;
- `closure {x} = closure {y}`, see `inseparable_iff_closure_eq`.
-/
def Inseparable (x y : X) : Prop :=
𝓝 x = 𝓝 y
#align inseparable Inseparable
local infixl:0 " ~ᵢ " => Inseparable
theorem inseparable_def : (x ~ᵢ y) ↔ 𝓝 x = 𝓝 y :=
Iff.rfl
#align inseparable_def inseparable_def
theorem inseparable_iff_specializes_and : (x ~ᵢ y) ↔ x ⤳ y ∧ y ⤳ x :=
le_antisymm_iff
#align inseparable_iff_specializes_and inseparable_iff_specializes_and
theorem Inseparable.specializes (h : x ~ᵢ y) : x ⤳ y := h.le
#align inseparable.specializes Inseparable.specializes
theorem Inseparable.specializes' (h : x ~ᵢ y) : y ⤳ x := h.ge
#align inseparable.specializes' Inseparable.specializes'
theorem Specializes.antisymm (h₁ : x ⤳ y) (h₂ : y ⤳ x) : x ~ᵢ y :=
le_antisymm h₁ h₂
#align specializes.antisymm Specializes.antisymm
theorem inseparable_iff_forall_open : (x ~ᵢ y) ↔ ∀ s : Set X, IsOpen s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_open, ← forall_and, ← iff_def,
Iff.comm]
#align inseparable_iff_forall_open inseparable_iff_forall_open
theorem not_inseparable_iff_exists_open :
¬(x ~ᵢ y) ↔ ∃ s : Set X, IsOpen s ∧ Xor' (x ∈ s) (y ∈ s) := by
simp [inseparable_iff_forall_open, ← xor_iff_not_iff]
#align not_inseparable_iff_exists_open not_inseparable_iff_exists_open
theorem inseparable_iff_forall_closed : (x ~ᵢ y) ↔ ∀ s : Set X, IsClosed s → (x ∈ s ↔ y ∈ s) := by
simp only [inseparable_iff_specializes_and, specializes_iff_forall_closed, ← forall_and, ←
iff_def]
#align inseparable_iff_forall_closed inseparable_iff_forall_closed
theorem inseparable_iff_mem_closure :
(x ~ᵢ y) ↔ x ∈ closure ({y} : Set X) ∧ y ∈ closure ({x} : Set X) :=
inseparable_iff_specializes_and.trans <| by simp only [specializes_iff_mem_closure, and_comm]
#align inseparable_iff_mem_closure inseparable_iff_mem_closure
theorem inseparable_iff_closure_eq : (x ~ᵢ y) ↔ closure ({x} : Set X) = closure {y} := by
simp only [inseparable_iff_specializes_and, specializes_iff_closure_subset, ← subset_antisymm_iff,
eq_comm]
#align inseparable_iff_closure_eq inseparable_iff_closure_eq
theorem inseparable_of_nhdsWithin_eq (hx : x ∈ s) (hy : y ∈ s) (h : 𝓝[s] x = 𝓝[s] y) : x ~ᵢ y :=
(specializes_of_nhdsWithin h.le hx).antisymm (specializes_of_nhdsWithin h.ge hy)
#align inseparable_of_nhds_within_eq inseparable_of_nhdsWithin_eq
theorem Inducing.inseparable_iff (hf : Inducing f) : (f x ~ᵢ f y) ↔ (x ~ᵢ y) := by
simp only [inseparable_iff_specializes_and, hf.specializes_iff]
#align inducing.inseparable_iff Inducing.inseparable_iff
theorem subtype_inseparable_iff {p : X → Prop} (x y : Subtype p) : (x ~ᵢ y) ↔ ((x : X) ~ᵢ y) :=
inducing_subtype_val.inseparable_iff.symm
#align subtype_inseparable_iff subtype_inseparable_iff
@[simp] theorem inseparable_prod {x₁ x₂ : X} {y₁ y₂ : Y} :
((x₁, y₁) ~ᵢ (x₂, y₂)) ↔ (x₁ ~ᵢ x₂) ∧ (y₁ ~ᵢ y₂) := by
simp only [Inseparable, nhds_prod_eq, prod_inj]
#align inseparable_prod inseparable_prod
theorem Inseparable.prod {x₁ x₂ : X} {y₁ y₂ : Y} (hx : x₁ ~ᵢ x₂) (hy : y₁ ~ᵢ y₂) :
(x₁, y₁) ~ᵢ (x₂, y₂) :=
inseparable_prod.2 ⟨hx, hy⟩
#align inseparable.prod Inseparable.prod
@[simp]
theorem inseparable_pi {f g : ∀ i, π i} : (f ~ᵢ g) ↔ ∀ i, f i ~ᵢ g i := by
simp only [Inseparable, nhds_pi, funext_iff, pi_inj]
#align inseparable_pi inseparable_pi
namespace Inseparable
@[refl]
theorem refl (x : X) : x ~ᵢ x :=
Eq.refl (𝓝 x)
#align inseparable.refl Inseparable.refl
theorem rfl : x ~ᵢ x :=
refl x
#align inseparable.rfl Inseparable.rfl
theorem of_eq (e : x = y) : Inseparable x y :=
e ▸ refl x
#align inseparable.of_eq Inseparable.of_eq
@[symm]
nonrec theorem symm (h : x ~ᵢ y) : y ~ᵢ x := h.symm
#align inseparable.symm Inseparable.symm
@[trans]
nonrec theorem trans (h₁ : x ~ᵢ y) (h₂ : y ~ᵢ z) : x ~ᵢ z := h₁.trans h₂
#align inseparable.trans Inseparable.trans
theorem nhds_eq (h : x ~ᵢ y) : 𝓝 x = 𝓝 y := h
#align inseparable.nhds_eq Inseparable.nhds_eq
theorem mem_open_iff (h : x ~ᵢ y) (hs : IsOpen s) : x ∈ s ↔ y ∈ s :=
inseparable_iff_forall_open.1 h s hs
#align inseparable.mem_open_iff Inseparable.mem_open_iff
theorem mem_closed_iff (h : x ~ᵢ y) (hs : IsClosed s) : x ∈ s ↔ y ∈ s :=
inseparable_iff_forall_closed.1 h s hs
#align inseparable.mem_closed_iff Inseparable.mem_closed_iff
theorem map_of_continuousAt (h : x ~ᵢ y) (hx : ContinuousAt f x) (hy : ContinuousAt f y) :
f x ~ᵢ f y :=
(h.specializes.map_of_continuousAt hy).antisymm (h.specializes'.map_of_continuousAt hx)
#align inseparable.map_of_continuous_at Inseparable.map_of_continuousAt
theorem map (h : x ~ᵢ y) (hf : Continuous f) : f x ~ᵢ f y :=
h.map_of_continuousAt hf.rst.imntinuousAt hf.rst.imntinuousAt
#align inseparable.map Inseparable.map
end Inseparable
theorem IsClosed.not_inseparable (hs : IsClosed s) (hx : x ∈ s) (hy : y ∉ s) : ¬(x ~ᵢ y) := fun h =>
hy <| (h.mem_closed_iff hs).1 hx
#align is_closed.not_inseparable IsClosed.not_inseparable
theorem IsOpen.not_inseparable (hs : IsOpen s) (hx : x ∈ s) (hy : y ∉ s) : ¬(x ~ᵢ y) := fun h =>
hy <| (h.mem_open_iff hs).1 hx
#align is_open.not_inseparable IsOpen.not_inseparable
/-!
### Separation quotient
In this section we define the quotient of a topological space by the `Inseparable` relation.
-/
variable (X)
/-- A `setoid` version of `Inseparable`, used to define the `SeparationQuotient`. -/
def inseparableSetoid : Setoid X := { Setoid.comap 𝓝 ⊥ with r := Inseparable }
#align inseparable_setoid inseparableSetoid
/-- The quotient of a topological space by its `inseparableSetoid`. This quotient is guaranteed to
be a T₀ space. -/
def SeparationQuotient := Quotient (inseparableSetoid X)
#align separation_quotient SeparationQuotient
instance : TopologicalSpace (SeparationQuotient X) := instTopologicalSpaceQuotient
variable {X}
variable {t : Set (SeparationQuotient X)}
namespace SeparationQuotient
/-- The natural map from a topological space to its separation quotient. -/
def mk : X → SeparationQuotient X := Quotient.mk''
#align separation_quotient.mk SeparationQuotient.mk
theorem quotientMap_mk : QuotientMap (mk : X → SeparationQuotient X) :=
quotientMap_quot_mk
#align separation_quotient.quotient_map_mk SeparationQuotient.quotientMap_mk
theorem continuous_mk : Continuous (mk : X → SeparationQuotient X) :=
continuous_quot_mk
#align separation_quotient.continuous_mk SeparationQuotient.continuous_mk
@[simp]
theorem mk_eq_mk : mk x = mk y ↔ (x ~ᵢ y) :=
Quotient.eq''
#align separation_quotient.mk_eq_mk SeparationQuotient.mk_eq_mk
theorem surjective_mk : Surjective (mk : X → SeparationQuotient X) :=
surjective_quot_mk _
#align separation_quotient.surjective_mk SeparationQuotient.surjective_mk
@[simp]
theorem range_mk : range (mk : X → SeparationQuotient X) = univ :=
surjective_mk.range_eq
#align separation_quotient.range_mk SeparationQuotient.range_mk
instance [Nonempty X] : Nonempty (SeparationQuotient X) :=
Nonempty.map mk ‹_›
instance [Inhabited X] : Inhabited (SeparationQuotient X) :=
⟨mk default⟩
instance [Subsingleton X] : Subsingleton (SeparationQuotient X) :=
surjective_mk.subsingleton
theorem preimage_image_mk_open (hs : IsOpen s) : mk ⁻¹' (mk '' s) = s := by
refine' Subset.antisymm _ (subset_preimage_image _ _)
rintro x ⟨y, hys, hxy⟩
exact ((mk_eq_mk.1 hxy).mem_open_iff hs).1 hys
#align separation_quotient.preimage_image_mk_open SeparationQuotient.preimage_image_mk_open
theorem isOpenMap_mk : IsOpenMap (mk : X → SeparationQuotient X) := fun s hs =>
quotientMap_mk.isOpen_preimage.1 <| by rwa [preimage_image_mk_open hs]
#align separation_quotient.is_open_map_mk SeparationQuotient.isOpenMap_mk
theorem preimage_image_mk_closed (hs : IsClosed s) : mk ⁻¹' (mk '' s) = s := by
| refine' Subset.antisymm _ (subset_preimage_image _ _) | theorem preimage_image_mk_closed (hs : IsClosed s) : mk ⁻¹' (mk '' s) = s := by
| Mathlib.Topology.Inseparable.474_0.2NeLzt0mQ64QlfB | theorem preimage_image_mk_closed (hs : IsClosed s) : mk ⁻¹' (mk '' s) = s | Mathlib_Topology_Inseparable |