state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Submodule.FG (Filtration.submodule F) F' : Filtration I M hf : F' ≀ F this : IsNoetherian β†₯(reesAlgebra I) β†₯(Filtration.submodule F) ⊒ Submodule.FG (Filtration.submodule F')
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF
rw [isNoetherian_submodule] at this
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF
Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F'✝ : Filtration I M h : Stable F inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M hF : Submodule.FG (Filtration.submodule F) F' : Filtration I M hf : F' ≀ F this : βˆ€ s ≀ Filtration.submodule F, Submodule.FG s ⊒ Submodule.FG (Filtration.submodule F')
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this
exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf)
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this
Mathlib.RingTheory.Filtration.405_0.wQ6WBws0g3n9213
theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M ⊒ x ∈ β¨… i, I ^ i β€’ ⊀ ↔ βˆƒ r, ↑r β€’ x = x
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by
let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M)
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ ⊒ x ∈ β¨… i, I ^ i β€’ ⊀ ↔ βˆƒ r, ↑r β€’ x = x
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M)
have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp)
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M)
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ k : β„• ⊒ I ^ k β€’ ⊀ = Filtration.N (stableFiltration I ⊀) k
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by
simp
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N ⊒ x ∈ β¨… i, I ^ i β€’ ⊀ ↔ βˆƒ r, ↑r β€’ x = x
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp)
constructor
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp)
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case mp R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N ⊒ x ∈ β¨… i, I ^ i β€’ ⊀ β†’ βˆƒ r, ↑r β€’ x = x
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β·
obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm)
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β·
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N ⊒ N ≀ I β€’ N
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by
obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N k : β„• hk : βˆ€ n β‰₯ k, I β€’ Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) n = Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) (n + 1) ⊒ N ≀ I β€’ N
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)
have := hk k (le_refl _)
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N k : β„• hk : βˆ€ n β‰₯ k, I β€’ Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) n = Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) (n + 1) this : I β€’ Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) (k + 1) ⊒ N ≀ I β€’ N
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _)
rw [hN, hN] at this
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _)
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N k : β„• hk : βˆ€ n β‰₯ k, I β€’ Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) n = Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) (n + 1) this : I β€’ N = N ⊒ N ≀ I β€’ N
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this
exact le_of_eq this.symm
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case mp.intro.intro R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N r : R hr₁ : r ∈ I hrβ‚‚ : βˆ€ n ∈ N, r β€’ n = n ⊒ x ∈ β¨… i, I ^ i β€’ ⊀ β†’ βˆƒ r, ↑r β€’ x = x
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm)
intro H
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm)
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case mp.intro.intro R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N r : R hr₁ : r ∈ I hrβ‚‚ : βˆ€ n ∈ N, r β€’ n = n H : x ∈ β¨… i, I ^ i β€’ ⊀ ⊒ βˆƒ r, ↑r β€’ x = x
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H
exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case mpr R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N ⊒ (βˆƒ r, ↑r β€’ x = x) β†’ x ∈ β¨… i, I ^ i β€’ ⊀
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β·
rintro ⟨r, eq⟩
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β·
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case mpr.intro R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N r : β†₯I eq : ↑r β€’ x = x ⊒ x ∈ β¨… i, I ^ i β€’ ⊀
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩
rw [Submodule.mem_iInf]
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case mpr.intro R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N r : β†₯I eq : ↑r β€’ x = x ⊒ βˆ€ (i : β„•), x ∈ I ^ i β€’ ⊀
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf]
intro i
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf]
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case mpr.intro R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N r : β†₯I eq : ↑r β€’ x = x i : β„• ⊒ x ∈ I ^ i β€’ ⊀
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i
induction' i with i hi
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case mpr.intro.zero R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N r : β†₯I eq : ↑r β€’ x = x ⊒ x ∈ I ^ Nat.zero β€’ ⊀
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β·
simp
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β·
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case mpr.intro.succ R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N r : β†₯I eq : ↑r β€’ x = x i : β„• hi : x ∈ I ^ i β€’ ⊀ ⊒ x ∈ I ^ Nat.succ i β€’ ⊀
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β·
rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq]
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β·
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
case mpr.intro.succ R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : Module.Finite R M x : M N : Submodule R M := β¨… i, I ^ i β€’ ⊀ hN : βˆ€ (k : β„•), Filtration.N (stableFiltration I ⊀ βŠ“ trivialFiltration I N) k = N r : β†₯I eq : ↑r β€’ x = x i : β„• hi : x ∈ I ^ i β€’ ⊀ ⊒ ↑r β€’ x ∈ I β€’ I ^ i β€’ ⊀
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq]
exact Submodule.smul_mem_smul r.prop hi
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq]
Mathlib.RingTheory.Filtration.434_0.wQ6WBws0g3n9213
theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁡ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M I : Ideal R F F' : Filtration I M inst✝² : IsNoetherianRing R inst✝¹ : LocalRing R inst✝ : Module.Finite R M h : I β‰  ⊀ ⊒ β¨… i, I ^ i β€’ ⊀ = βŠ₯
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by
rw [eq_bot_iff]
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by
Mathlib.RingTheory.Filtration.457_0.wQ6WBws0g3n9213
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁡ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M I : Ideal R F F' : Filtration I M inst✝² : IsNoetherianRing R inst✝¹ : LocalRing R inst✝ : Module.Finite R M h : I β‰  ⊀ ⊒ β¨… i, I ^ i β€’ ⊀ ≀ βŠ₯
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff]
intro x hx
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff]
Mathlib.RingTheory.Filtration.457_0.wQ6WBws0g3n9213
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁡ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M I : Ideal R F F' : Filtration I M inst✝² : IsNoetherianRing R inst✝¹ : LocalRing R inst✝ : Module.Finite R M h : I β‰  ⊀ x : M hx : x ∈ β¨… i, I ^ i β€’ ⊀ ⊒ x ∈ βŠ₯
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx
obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx
Mathlib.RingTheory.Filtration.457_0.wQ6WBws0g3n9213
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝⁡ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M I : Ideal R F F' : Filtration I M inst✝² : IsNoetherianRing R inst✝¹ : LocalRing R inst✝ : Module.Finite R M h : I β‰  ⊀ x : M hx : x ∈ β¨… i, I ^ i β€’ ⊀ r : β†₯I hr : ↑r β€’ x = x ⊒ x ∈ βŠ₯
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx
have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop)
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx
Mathlib.RingTheory.Filtration.457_0.wQ6WBws0g3n9213
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝⁡ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M I : Ideal R F F' : Filtration I M inst✝² : IsNoetherianRing R inst✝¹ : LocalRing R inst✝ : Module.Finite R M h : I β‰  ⊀ x : M hx : x ∈ β¨… i, I ^ i β€’ ⊀ r : β†₯I hr : ↑r β€’ x = x this : IsUnit (1 - ↑r) ⊒ x ∈ βŠ₯
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop)
apply this.smul_left_cancel.mp
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop)
Mathlib.RingTheory.Filtration.457_0.wQ6WBws0g3n9213
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝⁡ : CommRing R inst✝⁴ : AddCommGroup M inst✝³ : Module R M I : Ideal R F F' : Filtration I M inst✝² : IsNoetherianRing R inst✝¹ : LocalRing R inst✝ : Module.Finite R M h : I β‰  ⊀ x : M hx : x ∈ β¨… i, I ^ i β€’ ⊀ r : β†₯I hr : ↑r β€’ x = x this : IsUnit (1 - ↑r) ⊒ (1 - ↑r) β€’ x = (1 - ↑r) β€’ 0
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp
simp [sub_smul, hr]
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp
Mathlib.RingTheory.Filtration.457_0.wQ6WBws0g3n9213
theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : LocalRing R h : I β‰  ⊀ ⊒ β¨… i, I ^ i = βŠ₯
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by
convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h
/-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by
Mathlib.RingTheory.Filtration.467_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
case h.e'_2.h.e'_4.h R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : LocalRing R h : I β‰  ⊀ x✝ : β„• ⊒ I ^ x✝ = I ^ x✝ β€’ ⊀
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h
ext i
/-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h
Mathlib.RingTheory.Filtration.467_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
case h.e'_2.h.e'_4.h.h R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : LocalRing R h : I β‰  ⊀ x✝ : β„• i : R ⊒ i ∈ I ^ x✝ ↔ i ∈ I ^ x✝ β€’ ⊀
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h ext i
rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one]
/-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h ext i
Mathlib.RingTheory.Filtration.467_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : IsDomain R h : I β‰  ⊀ ⊒ β¨… i, I ^ i = βŠ₯
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h ext i rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] #align ideal.infi_pow_eq_bot_of_local_ring Ideal.iInf_pow_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by
rw [eq_bot_iff]
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by
Mathlib.RingTheory.Filtration.475_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : IsDomain R h : I β‰  ⊀ ⊒ β¨… i, I ^ i ≀ βŠ₯
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h ext i rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] #align ideal.infi_pow_eq_bot_of_local_ring Ideal.iInf_pow_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff]
intro x hx
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff]
Mathlib.RingTheory.Filtration.475_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : IsDomain R h : I β‰  ⊀ x : R hx : x ∈ β¨… i, I ^ i ⊒ x ∈ βŠ₯
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h ext i rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] #align ideal.infi_pow_eq_bot_of_local_ring Ideal.iInf_pow_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx
by_contra hx'
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx
Mathlib.RingTheory.Filtration.475_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : IsDomain R h : I β‰  ⊀ x : R hx : x ∈ β¨… i, I ^ i hx' : x βˆ‰ βŠ₯ ⊒ False
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h ext i rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] #align ideal.infi_pow_eq_bot_of_local_ring Ideal.iInf_pow_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx by_contra hx'
have := Ideal.mem_iInf_smul_pow_eq_bot_iff I x
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx by_contra hx'
Mathlib.RingTheory.Filtration.475_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : IsDomain R h : I β‰  ⊀ x : R hx : x ∈ β¨… i, I ^ i hx' : x βˆ‰ βŠ₯ this : x ∈ β¨… i, I ^ i β€’ ⊀ ↔ βˆƒ r, ↑r β€’ x = x ⊒ False
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h ext i rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] #align ideal.infi_pow_eq_bot_of_local_ring Ideal.iInf_pow_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx by_contra hx' have := Ideal.mem_iInf_smul_pow_eq_bot_iff I x
simp_rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] at this
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx by_contra hx' have := Ideal.mem_iInf_smul_pow_eq_bot_iff I x
Mathlib.RingTheory.Filtration.475_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : IsDomain R h : I β‰  ⊀ x : R hx : x ∈ β¨… i, I ^ i hx' : x βˆ‰ βŠ₯ this : x ∈ β¨… i, I ^ i ↔ βˆƒ r, ↑r * x = x ⊒ False
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h ext i rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] #align ideal.infi_pow_eq_bot_of_local_ring Ideal.iInf_pow_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx by_contra hx' have := Ideal.mem_iInf_smul_pow_eq_bot_iff I x simp_rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] at this
obtain ⟨r, hr⟩ := this.mp hx
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx by_contra hx' have := Ideal.mem_iInf_smul_pow_eq_bot_iff I x simp_rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] at this
Mathlib.RingTheory.Filtration.475_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : IsDomain R h : I β‰  ⊀ x : R hx : x ∈ β¨… i, I ^ i hx' : x βˆ‰ βŠ₯ this : x ∈ β¨… i, I ^ i ↔ βˆƒ r, ↑r * x = x r : β†₯I hr : ↑r * x = x ⊒ False
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h ext i rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] #align ideal.infi_pow_eq_bot_of_local_ring Ideal.iInf_pow_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx by_contra hx' have := Ideal.mem_iInf_smul_pow_eq_bot_iff I x simp_rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] at this obtain ⟨r, hr⟩ := this.mp hx
have := mul_right_cancelβ‚€ hx' (hr.trans (one_mul x).symm)
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx by_contra hx' have := Ideal.mem_iInf_smul_pow_eq_bot_iff I x simp_rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] at this obtain ⟨r, hr⟩ := this.mp hx
Mathlib.RingTheory.Filtration.475_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝⁴ : CommRing R inst✝³ : AddCommGroup M inst✝² : Module R M I : Ideal R F F' : Filtration I M inst✝¹ : IsNoetherianRing R inst✝ : IsDomain R h : I β‰  ⊀ x : R hx : x ∈ β¨… i, I ^ i hx' : x βˆ‰ βŠ₯ this✝ : x ∈ β¨… i, I ^ i ↔ βˆƒ r, ↑r * x = x r : β†₯I hr : ↑r * x = x this : ↑r = 1 ⊒ False
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e subst e exact F.pow_smul_le j k (Submodule.smul_mem_smul (r.2 j) (hf k)) #align ideal.filtration.submodule Ideal.Filtration.submodule @[simp] theorem mem_submodule (f : PolynomialModule R M) : f ∈ F.submodule ↔ βˆ€ i, f i ∈ F.N i := Iff.rfl #align ideal.filtration.mem_submodule Ideal.Filtration.mem_submodule theorem inf_submodule : (F βŠ“ F').submodule = F.submodule βŠ“ F'.submodule := by ext exact forall_and #align ideal.filtration.inf_submodule Ideal.Filtration.inf_submodule variable (I M) /-- `Ideal.Filtration.submodule` as an `InfHom`. -/ def submoduleInfHom : InfHom (I.Filtration M) (Submodule (reesAlgebra I) (PolynomialModule R M)) where toFun := Ideal.Filtration.submodule map_inf' := inf_submodule #align ideal.filtration.submodule_inf_hom Ideal.Filtration.submoduleInfHom variable {I M} theorem submodule_closure_single : AddSubmonoid.closure (⋃ i, single R i '' (F.N i : Set M)) = F.submodule.toAddSubmonoid := by apply le_antisymm Β· rw [AddSubmonoid.closure_le, Set.iUnion_subset_iff] rintro i _ ⟨m, hm, rfl⟩ j rw [single_apply] split_ifs with h Β· rwa [← h] Β· exact (F.N j).zero_mem Β· intro f hf rw [← f.sum_single] apply AddSubmonoid.sum_mem _ _ rintro c - exact AddSubmonoid.subset_closure (Set.subset_iUnion _ c <| Set.mem_image_of_mem _ (hf c)) #align ideal.filtration.submodule_closure_single Ideal.Filtration.submodule_closure_single theorem submodule_span_single : Submodule.span (reesAlgebra I) (⋃ i, single R i '' (F.N i : Set M)) = F.submodule := by rw [← Submodule.span_closure, submodule_closure_single, Submodule.coe_toAddSubmonoid] exact Submodule.span_eq (Filtration.submodule F) #align ideal.filtration.submodule_span_single Ideal.Filtration.submodule_span_single theorem submodule_eq_span_le_iff_stable_ge (nβ‚€ : β„•) : F.submodule = Submodule.span _ (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) ↔ βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) := by rw [← submodule_span_single, ← LE.le.le_iff_eq, Submodule.span_le, Set.iUnion_subset_iff] swap; Β· exact Submodule.span_mono (Set.iUnionβ‚‚_subset_iUnion _ _) constructor Β· intro H n hn refine' (F.smul_le n).antisymm _ intro x hx obtain ⟨l, hl⟩ := (Finsupp.mem_span_iff_total _ _ _).mp (H _ ⟨x, hx, rfl⟩) replace hl := congr_arg (fun f : β„• β†’β‚€ M => f (n + 1)) hl dsimp only at hl erw [Finsupp.single_eq_same] at hl rw [← hl, Finsupp.total_apply, Finsupp.sum_apply] apply Submodule.sum_mem _ _ rintro ⟨_, _, ⟨n', rfl⟩, _, ⟨hn', rfl⟩, m, hm, rfl⟩ - dsimp only [Subtype.coe_mk] rw [Subalgebra.smul_def, smul_single_apply, if_pos (show n' ≀ n + 1 by linarith)] have e : n' ≀ n := by linarith have := F.pow_smul_le_pow_smul (n - n') n' 1 rw [tsub_add_cancel_of_le e, pow_one, add_comm _ 1, ← add_tsub_assoc_of_le e, add_comm] at this exact this (Submodule.smul_mem_smul ((l _).2 <| n + 1 - n') hm) Β· let F' := Submodule.span (reesAlgebra I) (⋃ i ≀ nβ‚€, single R i '' (F.N i : Set M)) intro hF i have : βˆ€ i ≀ nβ‚€, single R i '' (F.N i : Set M) βŠ† F' := by -- Porting note: Original proof was -- `fun i hi => Set.Subset.trans (Set.subset_iUnionβ‚‚ i hi) Submodule.subset_span` intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi induction' i with j hj Β· exact this _ (zero_le _) by_cases hj' : j.succ ≀ nβ‚€ Β· exact this _ hj' simp only [not_le, Nat.lt_succ_iff] at hj' rw [Nat.succ_eq_add_one, ← hF _ hj'] rintro _ ⟨m, hm, rfl⟩ refine' Submodule.smul_induction_on hm (fun r hr m' hm' => _) (fun x y hx hy => _) Β· rw [add_comm, ← monomial_smul_single] exact F'.smul_mem ⟨_, reesAlgebra.monomial_mem.mpr (by rwa [pow_one])⟩ (hj <| Set.mem_image_of_mem _ hm') Β· rw [map_add] exact F'.add_mem hx hy #align ideal.filtration.submodule_eq_span_le_iff_stable_ge Ideal.Filtration.submodule_eq_span_le_iff_stable_ge /-- If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated. -/ theorem submodule_fg_iff_stable (hF' : βˆ€ i, (F.N i).FG) : F.submodule.FG ↔ F.Stable := by classical delta Ideal.Filtration.Stable simp_rw [← F.submodule_eq_span_le_iff_stable_ge] constructor Β· rintro H refine H.stablizes_of_iSup_eq ⟨fun nβ‚€ => Submodule.span _ (⋃ (i : β„•) (_ : i ≀ nβ‚€), single R i '' ↑(F.N i)), ?_⟩ ?_ Β· intro n m e rw [Submodule.span_le, Set.iUnionβ‚‚_subset_iff] intro i hi refine Set.Subset.trans ?_ Submodule.subset_span refine @Set.subset_iUnionβ‚‚ _ _ _ (fun i => fun _ => ↑((single R i) '' ((N F i) : Set M))) i ?_ exact hi.trans e Β· dsimp rw [← Submodule.span_iUnion, ← submodule_span_single] congr 1 ext simp only [Set.mem_iUnion, Set.mem_image, SetLike.mem_coe, exists_prop] constructor Β· rintro ⟨-, i, -, e⟩; exact ⟨i, e⟩ Β· rintro ⟨i, e⟩; exact ⟨i, i, le_refl i, e⟩ Β· rintro ⟨n, hn⟩ rw [hn] simp_rw [Submodule.span_iUnionβ‚‚, ← Finset.mem_range_succ_iff, iSup_subtype'] apply Submodule.fg_iSup rintro ⟨i, hi⟩ obtain ⟨s, hs⟩ := hF' i have : Submodule.span (reesAlgebra I) (s.image (lsingle R i) : Set (PolynomialModule R M)) = Submodule.span _ (single R i '' (F.N i : Set M)) := by rw [Finset.coe_image, ← Submodule.span_span_of_tower R, ← Submodule.map_span, hs]; rfl rw [Subtype.coe_mk, ← this] exact ⟨_, rfl⟩ #align ideal.filtration.submodule_fg_iff_stable Ideal.Filtration.submodule_fg_iff_stable variable {F} theorem Stable.of_le [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) {F' : I.Filtration M} (hf : F' ≀ F) : F'.Stable := by rw [← submodule_fg_iff_stable] at hF ⊒ any_goals intro i; exact IsNoetherian.noetherian _ have := isNoetherian_of_fg_of_noetherian _ hF rw [isNoetherian_submodule] at this exact this _ (OrderHomClass.mono (submoduleInfHom M I) hf) #align ideal.filtration.stable.of_le Ideal.Filtration.Stable.of_le theorem Stable.inter_right [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F βŠ“ F').Stable := hF.of_le inf_le_left #align ideal.filtration.stable.inter_right Ideal.Filtration.Stable.inter_right theorem Stable.inter_left [IsNoetherianRing R] [Module.Finite R M] (hF : F.Stable) : (F' βŠ“ F).Stable := hF.of_le inf_le_right #align ideal.filtration.stable.inter_left Ideal.Filtration.Stable.inter_left end Ideal.Filtration variable (I) /-- **Artin-Rees lemma** -/ theorem Ideal.exists_pow_inf_eq_pow_smul [IsNoetherianRing R] [Module.Finite R M] (N : Submodule R M) : βˆƒ k : β„•, βˆ€ n β‰₯ k, I ^ n β€’ ⊀ βŠ“ N = I ^ (n - k) β€’ (I ^ k β€’ ⊀ βŠ“ N) := ((I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N)).exists_pow_smul_eq_of_ge #align ideal.exists_pow_inf_eq_pow_smul Ideal.exists_pow_inf_eq_pow_smul theorem Ideal.mem_iInf_smul_pow_eq_bot_iff [IsNoetherianRing R] [Module.Finite R M] (x : M) : x ∈ (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) ↔ βˆƒ r : I, (r : R) β€’ x = x := by let N := (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) have hN : βˆ€ k, (I.stableFiltration ⊀ βŠ“ I.trivialFiltration N).N k = N := fun k => inf_eq_right.mpr ((iInf_le _ k).trans <| le_of_eq <| by simp) constructor Β· obtain ⟨r, hr₁, hrβ‚‚βŸ© := Submodule.exists_mem_and_smul_eq_self_of_fg_of_le_smul I N (IsNoetherian.noetherian N) (by obtain ⟨k, hk⟩ := (I.stableFiltration_stable ⊀).inter_right (I.trivialFiltration N) have := hk k (le_refl _) rw [hN, hN] at this exact le_of_eq this.symm) intro H exact ⟨⟨r, hrβ‚βŸ©, hrβ‚‚ _ H⟩ Β· rintro ⟨r, eq⟩ rw [Submodule.mem_iInf] intro i induction' i with i hi Β· simp Β· rw [Nat.succ_eq_one_add, pow_add, ← smul_smul, pow_one, ← eq] exact Submodule.smul_mem_smul r.prop hi #align ideal.mem_infi_smul_pow_eq_bot_iff Ideal.mem_iInf_smul_pow_eq_bot_iff theorem Ideal.iInf_pow_smul_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] [Module.Finite R M] (h : I β‰  ⊀) : (β¨… i : β„•, I ^ i β€’ ⊀ : Submodule R M) = βŠ₯ := by rw [eq_bot_iff] intro x hx obtain ⟨r, hr⟩ := (I.mem_iInf_smul_pow_eq_bot_iff x).mp hx have := LocalRing.isUnit_one_sub_self_of_mem_nonunits _ (LocalRing.le_maximalIdeal h r.prop) apply this.smul_left_cancel.mp simp [sub_smul, hr] #align ideal.infi_pow_smul_eq_bot_of_local_ring Ideal.iInf_pow_smul_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian local rings. -/ theorem Ideal.iInf_pow_eq_bot_of_localRing [IsNoetherianRing R] [LocalRing R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by convert I.iInf_pow_smul_eq_bot_of_localRing (M := R) h ext i rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] #align ideal.infi_pow_eq_bot_of_local_ring Ideal.iInf_pow_eq_bot_of_localRing /-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx by_contra hx' have := Ideal.mem_iInf_smul_pow_eq_bot_iff I x simp_rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] at this obtain ⟨r, hr⟩ := this.mp hx have := mul_right_cancelβ‚€ hx' (hr.trans (one_mul x).symm)
exact I.eq_top_iff_one.not.mp h (this β–Έ r.prop)
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯ := by rw [eq_bot_iff] intro x hx by_contra hx' have := Ideal.mem_iInf_smul_pow_eq_bot_iff I x simp_rw [smul_eq_mul, ← Ideal.one_eq_top, mul_one] at this obtain ⟨r, hr⟩ := this.mp hx have := mul_right_cancelβ‚€ hx' (hr.trans (one_mul x).symm)
Mathlib.RingTheory.Filtration.475_0.wQ6WBws0g3n9213
/-- **Krull's intersection theorem** for noetherian domains. -/ theorem Ideal.iInf_pow_eq_bot_of_isDomain [IsNoetherianRing R] [IsDomain R] (h : I β‰  ⊀) : β¨… i : β„•, I ^ i = βŠ₯
Mathlib_RingTheory_Filtration
x : β„š ⊒ 0 ≀ x ↔ x ∈ AddSubmonoid.closure (Set.range fun s => star s * s)
/- Copyright (c) 2023 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import Mathlib.Algebra.Star.Order import Mathlib.Data.Rat.Lemmas import Mathlib.Data.Rat.Order import Mathlib.GroupTheory.Submonoid.Membership #align_import data.rat.star from "leanprover-community/mathlib"@"31c24aa72e7b3e5ed97a8412470e904f82b81004" /-! # Star order structure on β„š Here we put the trivial `star` operation on `β„š` for convenience and show that it is a `StarOrderedRing`. In particular, this means that every element of `β„š` is a sum of squares. -/ namespace Rat instance : StarRing β„š where star := id star_involutive _ := rfl star_mul _ _ := mul_comm _ _ star_add _ _ := rfl instance : TrivialStar β„š where star_trivial _ := rfl instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by
refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩
instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by
Mathlib.Data.Rat.Star.30_0.tRpObn3UXJ6ySXp
instance : StarOrderedRing β„š
Mathlib_Data_Rat_Star
x : β„š hx : x ∈ AddSubmonoid.closure (Set.range fun s => star s * s) ⊒ βˆ€ x ∈ Set.range fun s => star s * s, 0 ≀ x
/- Copyright (c) 2023 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import Mathlib.Algebra.Star.Order import Mathlib.Data.Rat.Lemmas import Mathlib.Data.Rat.Order import Mathlib.GroupTheory.Submonoid.Membership #align_import data.rat.star from "leanprover-community/mathlib"@"31c24aa72e7b3e5ed97a8412470e904f82b81004" /-! # Star order structure on β„š Here we put the trivial `star` operation on `β„š` for convenience and show that it is a `StarOrderedRing`. In particular, this means that every element of `β„š` is a sum of squares. -/ namespace Rat instance : StarRing β„š where star := id star_involutive _ := rfl star_mul _ _ := mul_comm _ _ star_add _ _ := rfl instance : TrivialStar β„š where star_trivial _ := rfl instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by
rintro - ⟨s, rfl⟩
instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by
Mathlib.Data.Rat.Star.30_0.tRpObn3UXJ6ySXp
instance : StarOrderedRing β„š
Mathlib_Data_Rat_Star
case intro x : β„š hx : x ∈ AddSubmonoid.closure (Set.range fun s => star s * s) s : β„š ⊒ 0 ≀ (fun s => star s * s) s
/- Copyright (c) 2023 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import Mathlib.Algebra.Star.Order import Mathlib.Data.Rat.Lemmas import Mathlib.Data.Rat.Order import Mathlib.GroupTheory.Submonoid.Membership #align_import data.rat.star from "leanprover-community/mathlib"@"31c24aa72e7b3e5ed97a8412470e904f82b81004" /-! # Star order structure on β„š Here we put the trivial `star` operation on `β„š` for convenience and show that it is a `StarOrderedRing`. In particular, this means that every element of `β„š` is a sum of squares. -/ namespace Rat instance : StarRing β„š where star := id star_involutive _ := rfl star_mul _ _ := mul_comm _ _ star_add _ _ := rfl instance : TrivialStar β„š where star_trivial _ := rfl instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩;
exact mul_self_nonneg s
instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩;
Mathlib.Data.Rat.Star.30_0.tRpObn3UXJ6ySXp
instance : StarOrderedRing β„š
Mathlib_Data_Rat_Star
x : β„š hx : 0 ≀ x ⊒ x ∈ AddSubmonoid.closure (Set.range fun s => star s * s)
/- Copyright (c) 2023 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import Mathlib.Algebra.Star.Order import Mathlib.Data.Rat.Lemmas import Mathlib.Data.Rat.Order import Mathlib.GroupTheory.Submonoid.Membership #align_import data.rat.star from "leanprover-community/mathlib"@"31c24aa72e7b3e5ed97a8412470e904f82b81004" /-! # Star order structure on β„š Here we put the trivial `star` operation on `β„š` for convenience and show that it is a `StarOrderedRing`. In particular, this means that every element of `β„š` is a sum of squares. -/ namespace Rat instance : StarRing β„š where star := id star_involutive _ := rfl star_mul _ _ := mul_comm _ _ star_add _ _ := rfl instance : TrivialStar β„š where star_trivial _ := rfl instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≀ x`, we have `p q : β„•`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) β€’ (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat
suffices (Finset.range (x.num.natAbs * x.den)).sum (Function.const β„• ((1 : β„š) / x.den * ((1 : β„š) / x.den))) = x by exact this β–Έ sum_mem fun n _ => AddSubmonoid.subset_closure ⟨_, rfl⟩
instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≀ x`, we have `p q : β„•`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) β€’ (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat
Mathlib.Data.Rat.Star.30_0.tRpObn3UXJ6ySXp
instance : StarOrderedRing β„š
Mathlib_Data_Rat_Star
x : β„š hx : 0 ≀ x this : Finset.sum (Finset.range (Int.natAbs x.num * x.den)) (Function.const β„• (1 / ↑x.den * (1 / ↑x.den))) = x ⊒ x ∈ AddSubmonoid.closure (Set.range fun s => star s * s)
/- Copyright (c) 2023 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import Mathlib.Algebra.Star.Order import Mathlib.Data.Rat.Lemmas import Mathlib.Data.Rat.Order import Mathlib.GroupTheory.Submonoid.Membership #align_import data.rat.star from "leanprover-community/mathlib"@"31c24aa72e7b3e5ed97a8412470e904f82b81004" /-! # Star order structure on β„š Here we put the trivial `star` operation on `β„š` for convenience and show that it is a `StarOrderedRing`. In particular, this means that every element of `β„š` is a sum of squares. -/ namespace Rat instance : StarRing β„š where star := id star_involutive _ := rfl star_mul _ _ := mul_comm _ _ star_add _ _ := rfl instance : TrivialStar β„š where star_trivial _ := rfl instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≀ x`, we have `p q : β„•`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) β€’ (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat suffices (Finset.range (x.num.natAbs * x.den)).sum (Function.const β„• ((1 : β„š) / x.den * ((1 : β„š) / x.den))) = x by
exact this β–Έ sum_mem fun n _ => AddSubmonoid.subset_closure ⟨_, rfl⟩
instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≀ x`, we have `p q : β„•`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) β€’ (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat suffices (Finset.range (x.num.natAbs * x.den)).sum (Function.const β„• ((1 : β„š) / x.den * ((1 : β„š) / x.den))) = x by
Mathlib.Data.Rat.Star.30_0.tRpObn3UXJ6ySXp
instance : StarOrderedRing β„š
Mathlib_Data_Rat_Star
x : β„š hx : 0 ≀ x ⊒ Finset.sum (Finset.range (Int.natAbs x.num * x.den)) (Function.const β„• (1 / ↑x.den * (1 / ↑x.den))) = x
/- Copyright (c) 2023 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import Mathlib.Algebra.Star.Order import Mathlib.Data.Rat.Lemmas import Mathlib.Data.Rat.Order import Mathlib.GroupTheory.Submonoid.Membership #align_import data.rat.star from "leanprover-community/mathlib"@"31c24aa72e7b3e5ed97a8412470e904f82b81004" /-! # Star order structure on β„š Here we put the trivial `star` operation on `β„š` for convenience and show that it is a `StarOrderedRing`. In particular, this means that every element of `β„š` is a sum of squares. -/ namespace Rat instance : StarRing β„š where star := id star_involutive _ := rfl star_mul _ _ := mul_comm _ _ star_add _ _ := rfl instance : TrivialStar β„š where star_trivial _ := rfl instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≀ x`, we have `p q : β„•`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) β€’ (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat suffices (Finset.range (x.num.natAbs * x.den)).sum (Function.const β„• ((1 : β„š) / x.den * ((1 : β„š) / x.den))) = x by exact this β–Έ sum_mem fun n _ => AddSubmonoid.subset_closure ⟨_, rfl⟩
simp only [Function.const_apply, Finset.sum_const, Finset.card_range, nsmul_eq_mul]
instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≀ x`, we have `p q : β„•`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) β€’ (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat suffices (Finset.range (x.num.natAbs * x.den)).sum (Function.const β„• ((1 : β„š) / x.den * ((1 : β„š) / x.den))) = x by exact this β–Έ sum_mem fun n _ => AddSubmonoid.subset_closure ⟨_, rfl⟩
Mathlib.Data.Rat.Star.30_0.tRpObn3UXJ6ySXp
instance : StarOrderedRing β„š
Mathlib_Data_Rat_Star
x : β„š hx : 0 ≀ x ⊒ ↑(Int.natAbs x.num * x.den) * (1 / ↑x.den * (1 / ↑x.den)) = x
/- Copyright (c) 2023 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import Mathlib.Algebra.Star.Order import Mathlib.Data.Rat.Lemmas import Mathlib.Data.Rat.Order import Mathlib.GroupTheory.Submonoid.Membership #align_import data.rat.star from "leanprover-community/mathlib"@"31c24aa72e7b3e5ed97a8412470e904f82b81004" /-! # Star order structure on β„š Here we put the trivial `star` operation on `β„š` for convenience and show that it is a `StarOrderedRing`. In particular, this means that every element of `β„š` is a sum of squares. -/ namespace Rat instance : StarRing β„š where star := id star_involutive _ := rfl star_mul _ _ := mul_comm _ _ star_add _ _ := rfl instance : TrivialStar β„š where star_trivial _ := rfl instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≀ x`, we have `p q : β„•`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) β€’ (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat suffices (Finset.range (x.num.natAbs * x.den)).sum (Function.const β„• ((1 : β„š) / x.den * ((1 : β„š) / x.den))) = x by exact this β–Έ sum_mem fun n _ => AddSubmonoid.subset_closure ⟨_, rfl⟩ simp only [Function.const_apply, Finset.sum_const, Finset.card_range, nsmul_eq_mul]
rw [← Int.cast_ofNat, Int.ofNat_mul, Int.coe_natAbs, abs_of_nonneg (num_nonneg_iff_zero_le.mpr hx), Int.cast_mul, Int.cast_ofNat]
instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≀ x`, we have `p q : β„•`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) β€’ (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat suffices (Finset.range (x.num.natAbs * x.den)).sum (Function.const β„• ((1 : β„š) / x.den * ((1 : β„š) / x.den))) = x by exact this β–Έ sum_mem fun n _ => AddSubmonoid.subset_closure ⟨_, rfl⟩ simp only [Function.const_apply, Finset.sum_const, Finset.card_range, nsmul_eq_mul]
Mathlib.Data.Rat.Star.30_0.tRpObn3UXJ6ySXp
instance : StarOrderedRing β„š
Mathlib_Data_Rat_Star
x : β„š hx : 0 ≀ x ⊒ ↑x.num * ↑x.den * (1 / ↑x.den * (1 / ↑x.den)) = x
/- Copyright (c) 2023 Jireh Loreaux. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jireh Loreaux -/ import Mathlib.Algebra.Star.Order import Mathlib.Data.Rat.Lemmas import Mathlib.Data.Rat.Order import Mathlib.GroupTheory.Submonoid.Membership #align_import data.rat.star from "leanprover-community/mathlib"@"31c24aa72e7b3e5ed97a8412470e904f82b81004" /-! # Star order structure on β„š Here we put the trivial `star` operation on `β„š` for convenience and show that it is a `StarOrderedRing`. In particular, this means that every element of `β„š` is a sum of squares. -/ namespace Rat instance : StarRing β„š where star := id star_involutive _ := rfl star_mul _ _ := mul_comm _ _ star_add _ _ := rfl instance : TrivialStar β„š where star_trivial _ := rfl instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≀ x`, we have `p q : β„•`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) β€’ (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat suffices (Finset.range (x.num.natAbs * x.den)).sum (Function.const β„• ((1 : β„š) / x.den * ((1 : β„š) / x.den))) = x by exact this β–Έ sum_mem fun n _ => AddSubmonoid.subset_closure ⟨_, rfl⟩ simp only [Function.const_apply, Finset.sum_const, Finset.card_range, nsmul_eq_mul] rw [← Int.cast_ofNat, Int.ofNat_mul, Int.coe_natAbs, abs_of_nonneg (num_nonneg_iff_zero_le.mpr hx), Int.cast_mul, Int.cast_ofNat]
rw [← mul_assoc, mul_assoc (x.num : β„š), mul_one_div_cancel (Nat.cast_ne_zero.mpr x.pos.ne'), mul_one, mul_one_div, Rat.num_div_den]
instance : StarOrderedRing β„š := StarOrderedRing.ofNonnegIff (fun {_ _} => add_le_add_left) fun x => by refine' ⟨fun hx => _, fun hx => AddSubmonoid.closure_induction hx (by rintro - ⟨s, rfl⟩; exact mul_self_nonneg s) le_rfl fun _ _ => add_nonneg⟩ /- If `x = p / q`, then, since `0 ≀ x`, we have `p q : β„•`, and `p / q` is the sum of `p * q` copies of `(1 / q) ^ 2`, and so `x` lies in the `AddSubmonoid` generated by square elements. Note: it's possible to rephrase this argument as `x = (p * q) β€’ (1 / q) ^ 2`, but this would be somewhat challenging without increasing import requirements. -/ -- Porting note: rewrote proof to avoid removed constructor rat.mk_pnat suffices (Finset.range (x.num.natAbs * x.den)).sum (Function.const β„• ((1 : β„š) / x.den * ((1 : β„š) / x.den))) = x by exact this β–Έ sum_mem fun n _ => AddSubmonoid.subset_closure ⟨_, rfl⟩ simp only [Function.const_apply, Finset.sum_const, Finset.card_range, nsmul_eq_mul] rw [← Int.cast_ofNat, Int.ofNat_mul, Int.coe_natAbs, abs_of_nonneg (num_nonneg_iff_zero_le.mpr hx), Int.cast_mul, Int.cast_ofNat]
Mathlib.Data.Rat.Star.30_0.tRpObn3UXJ6ySXp
instance : StarOrderedRing β„š
Mathlib_Data_Rat_Star
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ ⊒ fourierCoeff (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) m = 𝓕 ⇑f ↑m
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand.
let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand.
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) ⊒ fourierCoeff (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) m = 𝓕 ⇑f ↑m
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩
have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul]
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) ⊒ βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€–
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by
have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x))
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) this : βˆ€ (x : ℝ), β€–e xβ€– = 1 ⊒ βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€–
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x))
intro K g
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x))
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) this : βˆ€ (x : ℝ), β€–e xβ€– = 1 K : Compacts ℝ g : C(ℝ, β„‚) ⊒ β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€–
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g
simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul]
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– ⊒ fourierCoeff (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) m = 𝓕 ⇑f ↑m
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul]
have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul]
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– ⊒ βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by
intro n
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– n : β„€ ⊒ ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n;
ext1 x
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n;
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case h f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– n : β„€ x : ℝ ⊒ (ContinuousMap.comp e (ContinuousMap.addRight ↑n)) x = e x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x
have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m))
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case h f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– n : β„€ x : ℝ this : Periodic (⇑e) 1 ⊒ (ContinuousMap.comp e (ContinuousMap.addRight ↑n)) x = e x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m))
simpa only [mul_one] using this.int_mul n x
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m))
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ fourierCoeff (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) m = 𝓕 ⇑f ↑m
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions.
calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions.
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ fourierCoeff (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) m = ∫ (x : ℝ) in 0 ..1, e x * (βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by
simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul]
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ ∫ (x : ℝ) in 0 ..1, e x * (βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x = ∫ (x : ℝ) in 0 ..1, βˆ‘' (n : β„€), (e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by
simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left]
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ ∫ (x : ℝ) in 0 ..1, βˆ‘' (n : β„€), (e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x = βˆ‘' (n : β„€), ∫ (x : ℝ) in 0 ..1, (e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by
refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ Summable fun i => β€–ContinuousMap.restrict (↑{ carrier := uIcc 0 1, isCompact' := (_ : IsCompact (uIcc 0 1)) }) (e * ContinuousMap.comp f (ContinuousMap.addRight ↑i))β€–
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm
convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case h.e'_5 f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ (fun i => β€–ContinuousMap.restrict (↑{ carrier := uIcc 0 1, isCompact' := (_ : IsCompact (uIcc 0 1)) }) (e * ContinuousMap.comp f (ContinuousMap.addRight ↑i))β€–) = fun n => β€–ContinuousMap.restrict (↑{ carrier := uIcc 0 1, isCompact' := (_ : IsCompact (uIcc 0 1)) }) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€–
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1
exact funext fun n => neK _ _
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ βˆ‘' (n : β„€), ∫ (x : ℝ) in 0 ..1, (e * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x = βˆ‘' (n : β„€), ∫ (x : ℝ) in 0 ..1, (ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n)) x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by
simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)) (ContinuousMap.addRight ↑n) = ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) ⊒ βˆ‘' (n : β„€), ∫ (x : ℝ) in 0 ..1, (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x = βˆ‘' (n : β„€), ∫ (x : ℝ) in 0 ..1, (ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)) (ContinuousMap.addRight ↑n) * ContinuousMap.comp f (ContinuousMap.addRight ↑n)) x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒
simp_rw [eadd]
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ βˆ‘' (n : β„€), ∫ (x : ℝ) in 0 ..1, (ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n)) x = ∫ (x : ℝ), e x * f x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by
suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ Integrable ⇑(e * f)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq
apply integrable_of_summable_norm_Icc
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case hf f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ Summable fun n => β€–ContinuousMap.restrict (Icc 0 1) (ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n))β€–
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc
convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case h.e'_5 f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ (fun n => β€–ContinuousMap.restrict (Icc 0 1) (ContinuousMap.comp (e * f) (ContinuousMap.addRight ↑n))β€–) = fun n => β€–ContinuousMap.restrict (↑{ carrier := Icc 0 1, isCompact' := (_ : IsCompact (Icc 0 1)) }) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€–
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1
simp_rw [mul_comp] at eadd ⊒
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case h.e'_5 f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)) (ContinuousMap.addRight ↑n) = ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) ⊒ (fun n => β€–ContinuousMap.restrict (Icc 0 1) (ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)) (ContinuousMap.addRight ↑n) * ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€–) = fun n => β€–ContinuousMap.restrict (↑{ carrier := Icc 0 1, isCompact' := (_ : IsCompact (Icc 0 1)) }) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€–
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒
simp_rw [eadd]
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case h.e'_5 f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk)) (ContinuousMap.addRight ↑n) = ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) ⊒ (fun n => β€–ContinuousMap.restrict (Icc 0 1) (ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) * ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€–) = fun n => β€–ContinuousMap.restrict (↑{ carrier := Icc 0 1, isCompact' := (_ : IsCompact (Icc 0 1)) }) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€–
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd]
exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd]
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ ∫ (x : ℝ), e x * f x = 𝓕 ⇑f ↑m
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by
rw [fourierIntegral_eq_integral_exp_smul]
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e ⊒ ∫ (x : ℝ), e x * f x = ∫ (v : ℝ), cexp (↑(-2 * Ο€ * v * ↑m) * I) β€’ f v
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul]
congr 1 with x : 1
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul]
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case e_f.h f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e x : ℝ ⊒ e x * f x = cexp (↑(-2 * Ο€ * x * ↑m) * I) β€’ f x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1
rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply]
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case e_f.h f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e x : ℝ ⊒ cexp (2 * ↑π * I * ↑(-m) * ↑x / ↑1) * f x = cexp (↑(-2 * Ο€ * x * ↑m) * I) * f x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply]
congr 2
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply]
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case e_f.h.e_a.e_z f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e x : ℝ ⊒ 2 * ↑π * I * ↑(-m) * ↑x / ↑1 = ↑(-2 * Ο€ * x * ↑m) * I
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2
push_cast
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
case e_f.h.e_a.e_z f : C(ℝ, β„‚) hf : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– m : β„€ e : C(ℝ, β„‚) := ContinuousMap.comp (fourier (-m)) (ContinuousMap.mk QuotientAddGroup.mk) neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–ContinuousMap.restrict (↑K) (e * g)β€– = β€–ContinuousMap.restrict (↑K) gβ€– eadd : βˆ€ (n : β„€), ContinuousMap.comp e (ContinuousMap.addRight ↑n) = e x : ℝ ⊒ 2 * ↑π * I * -↑m * ↑x / 1 = -2 * ↑π * ↑x * ↑m * I
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast
ring
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast
Mathlib.Analysis.Fourier.PoissonSummation.56_0.1MbUAOzT9Ye0D34
/-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) h_norm : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– h_sum : Summable fun n => 𝓕 ⇑f ↑n ⊒ βˆ‘' (n : β„€), f ↑n = βˆ‘' (n : β„€), 𝓕 ⇑f ↑n
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by
let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by
Mathlib.Analysis.Fourier.PoissonSummation.108_0.1MbUAOzT9Ye0D34
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n)
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) h_norm : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– h_sum : Summable fun n => 𝓕 ⇑f ↑n F : C(UnitAddCircle, β„‚) := ContinuousMap.mk (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) ⊒ βˆ‘' (n : β„€), f ↑n = βˆ‘' (n : β„€), 𝓕 ⇑f ↑n
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩
have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩
Mathlib.Analysis.Fourier.PoissonSummation.108_0.1MbUAOzT9Ye0D34
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n)
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) h_norm : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– h_sum : Summable fun n => 𝓕 ⇑f ↑n F : C(UnitAddCircle, β„‚) := ContinuousMap.mk (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) ⊒ Summable (fourierCoeff ⇑F)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by
convert h_sum
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by
Mathlib.Analysis.Fourier.PoissonSummation.108_0.1MbUAOzT9Ye0D34
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n)
Mathlib_Analysis_Fourier_PoissonSummation
case h.e'_5.h f : C(ℝ, β„‚) h_norm : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– h_sum : Summable fun n => 𝓕 ⇑f ↑n F : C(UnitAddCircle, β„‚) := ContinuousMap.mk (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) x✝ : β„€ ⊒ fourierCoeff (⇑F) x✝ = 𝓕 ⇑f ↑x✝
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum
exact Real.fourierCoeff_tsum_comp_add h_norm _
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum
Mathlib.Analysis.Fourier.PoissonSummation.108_0.1MbUAOzT9Ye0D34
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n)
Mathlib_Analysis_Fourier_PoissonSummation
f : C(ℝ, β„‚) h_norm : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– h_sum : Summable fun n => 𝓕 ⇑f ↑n F : C(UnitAddCircle, β„‚) := ContinuousMap.mk (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) this : Summable (fourierCoeff ⇑F) ⊒ βˆ‘' (n : β„€), f ↑n = βˆ‘' (n : β„€), 𝓕 ⇑f ↑n
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _
convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _
Mathlib.Analysis.Fourier.PoissonSummation.108_0.1MbUAOzT9Ye0D34
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n)
Mathlib_Analysis_Fourier_PoissonSummation
case h.e'_2 f : C(ℝ, β„‚) h_norm : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– h_sum : Summable fun n => 𝓕 ⇑f ↑n F : C(UnitAddCircle, β„‚) := ContinuousMap.mk (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) this : Summable (fourierCoeff ⇑F) ⊒ βˆ‘' (n : β„€), f ↑n = F 0
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β·
have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β·
Mathlib.Analysis.Fourier.PoissonSummation.108_0.1MbUAOzT9Ye0D34
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n)
Mathlib_Analysis_Fourier_PoissonSummation
case h.e'_2 f : C(ℝ, β„‚) h_norm : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– h_sum : Summable fun n => 𝓕 ⇑f ↑n F : C(UnitAddCircle, β„‚) := ContinuousMap.mk (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) this✝ : Summable (fourierCoeff ⇑F) this : βˆ‘' (b : β„€), (ContinuousMap.comp f (ContinuousMap.addRight ↑b)) 0 = (βˆ‘' (b : β„€), ContinuousMap.comp f (ContinuousMap.addRight ↑b)) 0 ⊒ βˆ‘' (n : β„€), f ↑n = F 0
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq
simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq
Mathlib.Analysis.Fourier.PoissonSummation.108_0.1MbUAOzT9Ye0D34
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n)
Mathlib_Analysis_Fourier_PoissonSummation
case h.e'_3 f : C(ℝ, β„‚) h_norm : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– h_sum : Summable fun n => 𝓕 ⇑f ↑n F : C(UnitAddCircle, β„‚) := ContinuousMap.mk (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) this : Summable (fourierCoeff ⇑F) ⊒ βˆ‘' (n : β„€), 𝓕 ⇑f ↑n = βˆ‘' (b : β„€), fourierCoeff (⇑F) b β€’ (fourier b) 0
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β·
congr 1 with n : 1
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β·
Mathlib.Analysis.Fourier.PoissonSummation.108_0.1MbUAOzT9Ye0D34
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n)
Mathlib_Analysis_Fourier_PoissonSummation
case h.e'_3.e_f.h f : C(ℝ, β„‚) h_norm : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– h_sum : Summable fun n => 𝓕 ⇑f ↑n F : C(UnitAddCircle, β„‚) := ContinuousMap.mk (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) this : Summable (fourierCoeff ⇑F) n : β„€ ⊒ 𝓕 ⇑f ↑n = fourierCoeff (⇑F) n β€’ (fourier n) 0
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1
rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one]
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1
Mathlib.Analysis.Fourier.PoissonSummation.108_0.1MbUAOzT9Ye0D34
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n)
Mathlib_Analysis_Fourier_PoissonSummation
case h.e'_3.e_f.h f : C(ℝ, β„‚) h_norm : βˆ€ (K : Compacts ℝ), Summable fun n => β€–ContinuousMap.restrict (↑K) (ContinuousMap.comp f (ContinuousMap.addRight ↑n))β€– h_sum : Summable fun n => 𝓕 ⇑f ↑n F : C(UnitAddCircle, β„‚) := ContinuousMap.mk (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) this : Summable (fourierCoeff ⇑F) n : β„€ ⊒ fourierCoeff (Periodic.lift (_ : Periodic (⇑(βˆ‘' (n : β„€), ContinuousMap.comp f (ContinuousMap.addRight (n β€’ 1)))) 1)) n = fourierCoeff (⇑F) n
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one]
rfl
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one]
Mathlib.Analysis.Fourier.PoissonSummation.108_0.1MbUAOzT9Ye0D34
/-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n)
Mathlib_Analysis_Fourier_PoissonSummation
E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ ⊒ (fun x => β€–ContinuousMap.restrict (Icc (x + R) (x + S)) fβ€–) =O[atTop] fun x => |x| ^ (-b)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma.
have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by rw [rpow_neg, rpow_neg, inv_le_inv] Β· gcongr all_goals positivity refine' this.trans _ rw [← mul_rpow, rpow_neg, rpow_neg] Β· gcongr linarith all_goals positivity
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma.
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S : ℝ ⊒ βˆ€ (x : ℝ), max 0 (-2 * R) < x β†’ βˆ€ (y : ℝ), x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by
intro x hx y hy
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : max 0 (-2 * R) < x y : ℝ hy : x + R ≀ y ⊒ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy
rw [max_lt_iff] at hx
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x : ℝ hx : 0 < x ∧ -2 * R < x y : ℝ hy : x + R ≀ y ⊒ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx
obtain ⟨hx1, hx2⟩ := hx
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
case intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x ⊒ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx
have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x ⊒ 0 < x + R
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by
rcases le_or_lt 0 R with (h | _)
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
case inl E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x h : 0 ≀ R ⊒ 0 < x + R
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β·
positivity
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β·
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
case inr E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x h✝ : R < 0 ⊒ 0 < x + R
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β·
linarith
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β·
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
case intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x hxR : 0 < x + R ⊒ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith
have hy' : 0 < y := hxR.trans_le hy
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
case intro E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x hxR : 0 < x + R hy' : 0 < y ⊒ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy
have : y ^ (-b) ≀ (x + R) ^ (-b) := by rw [rpow_neg, rpow_neg, inv_le_inv] Β· gcongr all_goals positivity
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x hxR : 0 < x + R hy' : 0 < y ⊒ y ^ (-b) ≀ (x + R) ^ (-b)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by
rw [rpow_neg, rpow_neg, inv_le_inv]
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x hxR : 0 < x + R hy' : 0 < y ⊒ (x + R) ^ b ≀ y ^ b
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by rw [rpow_neg, rpow_neg, inv_le_inv] Β·
gcongr
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by rw [rpow_neg, rpow_neg, inv_le_inv] Β·
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
case ha E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x hxR : 0 < x + R hy' : 0 < y ⊒ 0 < y ^ b case hb E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x hxR : 0 < x + R hy' : 0 < y ⊒ 0 < (x + R) ^ b case hx E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x hxR : 0 < x + R hy' : 0 < y ⊒ 0 ≀ x + R case hx E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x hxR : 0 < x + R hy' : 0 < y ⊒ 0 ≀ y
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by rw [rpow_neg, rpow_neg, inv_le_inv] Β· gcongr
all_goals positivity
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by rw [rpow_neg, rpow_neg, inv_le_inv] Β· gcongr
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
case ha E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x hxR : 0 < x + R hy' : 0 < y ⊒ 0 < y ^ b
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by rw [rpow_neg, rpow_neg, inv_le_inv] Β· gcongr all_goals
positivity
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by rw [rpow_neg, rpow_neg, inv_le_inv] Β· gcongr all_goals
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation
case hb E : Type u_1 inst✝ : NormedAddCommGroup E f : C(ℝ, E) b : ℝ hb : 0 < b hf : ⇑f =O[atTop] fun x => |x| ^ (-b) R S x y : ℝ hy : x + R ≀ y hx1 : 0 < x hx2 : -2 * R < x hxR : 0 < x + R hy' : 0 < y ⊒ 0 < (x + R) ^ b
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Fourier.AddCircle import Mathlib.Analysis.Fourier.FourierTransform import Mathlib.Analysis.PSeries import Mathlib.Analysis.Distribution.SchwartzSpace import Mathlib.MeasureTheory.Measure.Lebesgue.Integral #align_import analysis.fourier.poisson_summation from "leanprover-community/mathlib"@"fd5edc43dc4f10b85abfe544b88f82cf13c5f844" /-! # Poisson's summation formula We prove Poisson's summation formula `βˆ‘ (n : β„€), f n = βˆ‘ (n : β„€), 𝓕 f n`, where `𝓕 f` is the Fourier transform of `f`, under the following hypotheses: * `f` is a continuous function `ℝ β†’ β„‚`. * The sum `βˆ‘ (n : β„€), 𝓕 f n` is convergent. * For all compacts `K βŠ‚ ℝ`, the sum `βˆ‘ (n : β„€), sup { β€–f(x + n)β€– | x ∈ K }` is convergent. See `Real.tsum_eq_tsum_fourierIntegral` for this formulation. These hypotheses are potentially a little awkward to apply, so we also provide the less general but easier-to-use result `Real.tsum_eq_tsum_fourierIntegral_of_rpow_decay`, in which we assume `f` and `𝓕 f` both decay as `|x| ^ (-b)` for some `b > 1`, and the even more specific result `SchwartzMap.tsum_eq_tsum_fourierIntegral`, where we assume that both `f` and `𝓕 f` are Schwartz functions. ## TODO At the moment `SchwartzMap.tsum_eq_tsum_fourierIntegral` requires separate proofs that both `f` and `𝓕 f` are Schwartz functions. In fact, `𝓕 f` is automatically Schwartz if `f` is; and once we have this lemma in the library, we should adjust the hypotheses here accordingly. -/ noncomputable section open Function hiding comp_apply open Set hiding restrict_apply open Complex hiding abs_of_nonneg open Real open TopologicalSpace Filter MeasureTheory Asymptotics open scoped Real BigOperators Filter FourierTransform attribute [local instance] Real.fact_zero_lt_one open ContinuousMap /-- The key lemma for Poisson summation: the `m`-th Fourier coefficient of the periodic function `βˆ‘' n : β„€, f (x + n)` is the value at `m` of the Fourier transform of `f`. -/ theorem Real.fourierCoeff_tsum_comp_add {f : C(ℝ, β„‚)} (hf : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp (ContinuousMap.addRight n)).restrict Kβ€–) (m : β„€) : fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = 𝓕 f m := by -- NB: This proof can be shortened somewhat by telescoping together some of the steps in the calc -- block, but I think it's more legible this way. We start with preliminaries about the integrand. let e : C(ℝ, β„‚) := (fourier (-m)).comp ⟨((↑) : ℝ β†’ UnitAddCircle), continuous_quotient_mk'⟩ have neK : βˆ€ (K : Compacts ℝ) (g : C(ℝ, β„‚)), β€–(e * g).restrict Kβ€– = β€–g.restrict Kβ€– := by have : βˆ€ x : ℝ, β€–e xβ€– = 1 := fun x => abs_coe_circle (AddCircle.toCircle (-m β€’ x)) intro K g simp_rw [norm_eq_iSup_norm, restrict_apply, mul_apply, norm_mul, this, one_mul] have eadd : βˆ€ (n : β„€), e.comp (ContinuousMap.addRight n) = e := by intro n; ext1 x have : Periodic e 1 := Periodic.comp (fun x => AddCircle.coe_add_period 1 x) (fourier (-m)) simpa only [mul_one] using this.int_mul n x -- Now the main argument. First unwind some definitions. calc fourierCoeff (Periodic.lift <| f.periodic_tsum_comp_add_zsmul 1) m = ∫ x in (0 : ℝ)..1, e x * (βˆ‘' n : β„€, f.comp (ContinuousMap.addRight n)) x := by simp_rw [fourierCoeff_eq_intervalIntegral _ m 0, div_one, one_smul, zero_add, comp_apply, coe_mk, Periodic.lift_coe, zsmul_one, smul_eq_mul] -- Transform sum in C(ℝ, β„‚) evaluated at x into pointwise sum of values. _ = ∫ x in (0:ℝ)..1, βˆ‘' n : β„€, (e * f.comp (ContinuousMap.addRight n)) x := by simp_rw [coe_mul, Pi.mul_apply, ← ContinuousMap.tsum_apply (summable_of_locally_summable_norm hf), tsum_mul_left] -- Swap sum and integral. _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f.comp (ContinuousMap.addRight n)) x := by refine' (intervalIntegral.tsum_intervalIntegral_eq_of_summable_norm _).symm convert hf ⟨uIcc 0 1, isCompact_uIcc⟩ using 1 exact funext fun n => neK _ _ _ = βˆ‘' n : β„€, ∫ x in (0:ℝ)..1, (e * f).comp (ContinuousMap.addRight n) x := by simp only [ContinuousMap.comp_apply, mul_comp] at eadd ⊒ simp_rw [eadd] -- Rearrange sum of interval integrals into an integral over `ℝ`. _ = ∫ x, e x * f x := by suffices Integrable (e * f) from this.hasSum_intervalIntegral_comp_add_int.tsum_eq apply integrable_of_summable_norm_Icc convert hf ⟨Icc 0 1, isCompact_Icc⟩ using 1 simp_rw [mul_comp] at eadd ⊒ simp_rw [eadd] exact funext fun n => neK ⟨Icc 0 1, isCompact_Icc⟩ _ -- Minor tidying to finish _ = 𝓕 f m := by rw [fourierIntegral_eq_integral_exp_smul] congr 1 with x : 1 rw [smul_eq_mul, comp_apply, coe_mk, coe_mk, ContinuousMap.toFun_eq_coe, fourier_coe_apply] congr 2 push_cast ring #align real.fourier_coeff_tsum_comp_add Real.fourierCoeff_tsum_comp_add /-- **Poisson's summation formula**, most general form. -/ theorem Real.tsum_eq_tsum_fourierIntegral {f : C(ℝ, β„‚)} (h_norm : βˆ€ K : Compacts ℝ, Summable fun n : β„€ => β€–(f.comp <| ContinuousMap.addRight n).restrict Kβ€–) (h_sum : Summable fun n : β„€ => 𝓕 f n) : βˆ‘' n : β„€, f n = (βˆ‘' n : β„€, 𝓕 f n) := by let F : C(UnitAddCircle, β„‚) := ⟨(f.periodic_tsum_comp_add_zsmul 1).lift, continuous_coinduced_dom.mpr (map_continuous _)⟩ have : Summable (fourierCoeff F) := by convert h_sum exact Real.fourierCoeff_tsum_comp_add h_norm _ convert (has_pointwise_sum_fourier_series_of_summable this 0).tsum_eq.symm using 1 Β· have := (hasSum_apply (summable_of_locally_summable_norm h_norm).hasSum 0).tsum_eq simpa only [coe_mk, ← QuotientAddGroup.mk_zero, Periodic.lift_coe, zsmul_one, comp_apply, coe_addRight, zero_add] using this Β· congr 1 with n : 1 rw [← Real.fourierCoeff_tsum_comp_add h_norm n, fourier_eval_zero, smul_eq_mul, mul_one] rfl #align real.tsum_eq_tsum_fourier_integral Real.tsum_eq_tsum_fourierIntegral section RpowDecay variable {E : Type*} [NormedAddCommGroup E] /-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by rw [rpow_neg, rpow_neg, inv_le_inv] Β· gcongr all_goals
positivity
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b) := by -- First establish an explicit estimate on decay of inverse powers. -- This is logically independent of the rest of the proof, but of no mathematical interest in -- itself, so it is proved using `async` rather than being formulated as a separate lemma. have claim : βˆ€ x : ℝ, max 0 (-2 * R) < x β†’ βˆ€ y : ℝ, x + R ≀ y β†’ y ^ (-b) ≀ (1 / 2) ^ (-b) * x ^ (-b) := by intro x hx y hy rw [max_lt_iff] at hx obtain ⟨hx1, hx2⟩ := hx have hxR : 0 < x + R := by rcases le_or_lt 0 R with (h | _) Β· positivity Β· linarith have hy' : 0 < y := hxR.trans_le hy have : y ^ (-b) ≀ (x + R) ^ (-b) := by rw [rpow_neg, rpow_neg, inv_le_inv] Β· gcongr all_goals
Mathlib.Analysis.Fourier.PoissonSummation.131_0.1MbUAOzT9Ye0D34
/-- If `f` is `O(x ^ (-b))` at infinity, then so is the function `Ξ» x, β€–f.restrict (Icc (x + R) (x + S))β€–` for any fixed `R` and `S`. -/ theorem isBigO_norm_Icc_restrict_atTop {f : C(ℝ, E)} {b : ℝ} (hb : 0 < b) (hf : IsBigO atTop f fun x : ℝ => |x| ^ (-b)) (R S : ℝ) : IsBigO atTop (fun x : ℝ => β€–f.restrict (Icc (x + R) (x + S))β€–) fun x : ℝ => |x| ^ (-b)
Mathlib_Analysis_Fourier_PoissonSummation