File size: 3,545 Bytes
f3ba4e5
 
 
 
 
 
6bc6c66
f3ba4e5
 
 
 
 
 
 
 
 
0d4d143
f3ba4e5
 
 
a9586bc
f3ba4e5
 
 
053a9a0
 
 
 
 
 
 
 
 
 
 
 
f3ba4e5
 
 
 
4554bc0
f3ba4e5
 
 
 
 
 
 
c8e9ede
f3ba4e5
 
 
 
 
 
42bbdb8
f3ba4e5
 
 
 
 
 
 
 
 
 
 
 
deceb2d
f3ba4e5
 
 
 
 
 
 
 
 
 
96777ef
f3ba4e5
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Loading script for the COPA-ca dataset.
import json
import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = ""

_DESCRIPTION = """\
               The COPA-ca dataset (Choice of plausible alternatives in Catalan) is a professional translation of the English COPA dataset into Catalan, commissioned by BSC LangTech Unit. The dataset consists of 1000 premises, each given a question and two choices with a label encoding which of the choices is more plausible given the annotator.

The dataset is split into 400 training samples, 100 validation samples, and 500 test samples. It includes the following features: 'premise', 'choice1', 'choice2', 'label', 'question', 'changed' (boolean).

This work is licensed under a Attribution-ShareAlike 4.0 International License.
               """

_HOMEPAGE = "https://zenodo.org/record/8124398"


_URL = "https://huggingface.co/datasets/projecte-aina/copa-ca/resolve/main/"
_TRAIN_FILE = "copa-ca.train.jsonl"
_DEV_FILE = "copa-ca.val.jsonl"
_TEST_FILE = "copa-ca.test.jsonl"


class copaCaConfig(datasets.BuilderConfig):
    """ Builder config for the COPA-ca dataset """

    def __init__(self, **kwargs):
        """BuilderConfig for COPA-ca.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(copaCaConfig, self).__init__(**kwargs)
        
class copaCa(datasets.GeneratorBasedBuilder):
    """ COPA-ca Dataset """

    BUILDER_CONFIGS = [
        copaCaConfig(
            name="copa-ca",
            version=datasets.Version("1.0.1"),
            description="COPA-ca dataset",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "premise": datasets.Value("string"),
                    "choice1": datasets.Value("string"),
                    "choice2": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    'label': datasets.features.ClassLabel(names=['1', '2']),
                    "idx": datasets.Value("int64"),
                    "changed": datasets.Value("bool"),
                }
            ),
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAIN_FILE}",
            "dev": f"{_URL}{_DEV_FILE}",
            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        with open(filepath, encoding='utf-8') as f:
            for i, line in enumerate(f):
                data = json.loads(line)
                yield i, {
                    'premise': data['premise'],
                    'choice1': data['choice1'],
                    'choice2': data['choice2'],
                    'question': data['question'],
                    'label': str(data['label']),
                    'idx': data['idx'],
                    'changed': data['changed']
                }