File size: 6,770 Bytes
07befdc
c679854
 
 
 
 
 
 
 
 
 
6f742df
c679854
 
 
 
6f742df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c69f9c1
 
 
335dec5
 
 
c07ab13
 
 
 
335dec5
6f742df
 
 
 
 
335dec5
 
c07ab13
 
07befdc
c679854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3842948
c679854
9e6e8d0
c679854
 
 
 
 
 
 
4930e93
c679854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd2d74
c679854
 
 
9e6e8d0
c679854
 
 
8dd2d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc96adf
c679854
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
---
annotations_creators:
- professional translators
language:
- ca
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
task_ids:
- natural-language-inference
pretty_name: copa-ca
tags:
- causal-reasoning
- textual-entailment
- commonsense-reasoning
dataset_info:
  features:
  - name: premise
    dtype: string
  - name: choice1
    dtype: string
  - name: choice2
    dtype: string
  - name: question
    dtype: string
  - name: label
    dtype: int64
  - name: idx
    dtype: int64
  - name: changed
    dtype: bool
  splits:
  - name: train
    num_bytes: 55999
    num_examples: 400
  - name: validation
    num_bytes: 14204
    num_examples: 100
  - name: test
    num_bytes: 68790
    num_examples: 500
  download_size: 95549
  dataset_size: 138993
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
---

# Dataset Card for COPA-ca

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Example](#example)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)


## Dataset Description

- **Website:** https://zenodo.org/record/7973926
- **Point of Contact:** [email protected]


### Dataset Summary

The COPA-ca dataset (Choice of plausible alternatives in Catalan) is a professional translation of the English COPA dataset into Catalan, commissioned by BSC LangTech Unit. The dataset consists of 1000 premises, each given a question and two choices with a label encoding which of the choices is more plausible given the annotator.

The dataset is split into 400 training samples, 100 validation samples, and 500 test samples. It includes the following features: 'premise', 'choice1', 'choice2', 'question', 'label', 'idx', 'changed'.

This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>.

### Supported Tasks and Leaderboards

Commonsense reasoning, Language Model

### Languages

The dataset is in Catalan (`ca-ES`).

## Dataset Structure

### Data Instances

Three JSON files, one for each split.

### Example:

<pre>
    
   {
      "premise": "El meu cos va dibuixar una ombra damunt l'herba.", 
      "choice1": "El sol estava sortint.", 
      "choice2": "L'herba estava tallada.", 
      "question": "cause", 
      "label": 0, 
      "idx": 1, 
      "changed": false
   }
   
   {
      "premise": "La dona va tolerar el comportament difícil de la seva amiga.", 
      "choice1": "La dona sabia que la seva amiga estava passant per un moment difícil.", 
      "choice2": "A la dona li va semblar que la seva amiga s'aprofitava de la seva amabilitat.", 
      "question": "cause", 
      "label": 0, 
      "idx": 2, 
      "changed": false
   }
  
</pre>

### Data Fields

- premise: a string feature. 
- choice1: a string feature.
- choice2: a string feature.
- question: a string feature.
- label: a int64 feature.
- idx: a int32 feature.
- changed: a bool feature.

    
### Data Splits

* copa-ca.train.jsonl: 400 examples
* copa-ca.val.jsonl: 100 examples
* copa-ca.test.jsonl: 500 examples

## Dataset Creation

### Curation Rationale

We created this dataset to contribute to the development of language models in Catalan, a low-resource language.

### Source Data

[COPA](https://people.ict.usc.edu/~gordon/copa.html).

#### Initial Data Collection and Normalization

This dataset is a professional translation the English COPA dataset into Catalan, commissioned by BSC LangTech Unit within Projecte AINA.


#### Who are the source language producers?

For more information on how COPA was created, refer to the paper (Roemmele et al. 2011), or 
visit the [COPA's webpage](https://people.ict.usc.edu/~gordon/copa.html).


### Annotations

#### Annotation process

[N/A]

#### Who are the annotators?

This is a professional translation of the English COPA dataset and its annotations.

### Personal and Sensitive Information

No personal or sensitive information included.
  
## Considerations for Using the Data

### Social Impact of Dataset

We hope this dataset contributes to the development of language models in Catalan, a low-resource language.

### Discussion of Biases

[N/A]

### Other Known Limitations

[N/A]

## Additional Information

### Dataset Curators

Language Technologies Unit at the Barcelona Supercomputing Center ([email protected])

This work has been promoted and financed by the Generalitat de Catalunya through the [Aina project](https://projecteaina.cat/).

### Licensing Information

This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/">Attribution-ShareAlike 4.0 International License</a>.

### Citation Information

```
@inproceedings{gonzalez-agirre-etal-2024-building-data,
    title = "Building a Data Infrastructure for a Mid-Resource Language: The Case of {C}atalan",
    author = "Gonzalez-Agirre, Aitor  and
      Marimon, Montserrat  and
      Rodriguez-Penagos, Carlos  and
      Aula-Blasco, Javier  and
      Baucells, Irene  and
      Armentano-Oller, Carme  and
      Palomar-Giner, Jorge  and
      Kulebi, Baybars  and
      Villegas, Marta",
    editor = "Calzolari, Nicoletta  and
      Kan, Min-Yen  and
      Hoste, Veronique  and
      Lenci, Alessandro  and
      Sakti, Sakriani  and
      Xue, Nianwen",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.231",
    pages = "2556--2566",
}
```

[DOI](https://doi.org/10.5281/zenodo.8124398)

### Contributions

[N/A]