LuciaTormo commited on
Commit
8e4ce28
1 Parent(s): d369403

Upload COPA-ca.py

Browse files
Files changed (1) hide show
  1. data/COPA-ca.py +92 -0
data/COPA-ca.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Loading script for the COPA-ca dataset.
2
+ import json
3
+ import datasets
4
+
5
+ logger = datasets.logging.get_logger(__name__)
6
+
7
+ _CITATION = ""
8
+
9
+ _DESCRIPTION = """\
10
+ The COPA-ca dataset (Choice of plausible alternatives in Catalan) is a professional translation of the English COPA dataset into Catalan, commissioned by BSC LangTech Unit. The dataset consists of 1000 premises, each given a question and two choices with a label encoding which of the choices is more plausible given the annotator.
11
+
12
+ The dataset is split into 400 training samples, 100 validation samples, and 500 test samples. It includes the following features: 'premise', 'choice1', 'choice2', 'label', 'question', 'changed' (boolean).
13
+
14
+ This work is licensed under a Attribution-ShareAlike 4.0 International License.
15
+ """
16
+
17
+ _HOMEPAGE = "https://zenodo.org/record/8124398"
18
+
19
+
20
+ _URL = "https://huggingface.co/datasets/projecte-aina/copa-ca/resolve/main/"
21
+ _TRAIN_FILE = "copa-ca.train.jsonl"
22
+ _DEV_FILE = "copa-ca.val.jsonl"
23
+ _TEST_FILE = "copa-ca.test.jsonl"
24
+
25
+
26
+ class copaCaConfig(datasets.BuilderConfig):
27
+ """ Builder config for the COPA-ca dataset """
28
+
29
+ def __init__(self, **kwargs):
30
+ """BuilderConfig for COPA-ca.
31
+ Args:
32
+ **kwargs: keyword arguments forwarded to super.
33
+ """
34
+ super(copaCaConfig, self).__init__(**kwargs)
35
+
36
+ class copaCa(datasets.GeneratorBasedBuilder):
37
+ """ COPA-ca Dataset """
38
+
39
+ BUILDER_CONFIGS = [
40
+ copaCaConfig(
41
+ name="copa-ca",
42
+ version=datasets.Version("1.0.1"),
43
+ description="COPA-ca dataset",
44
+ ),
45
+ ]
46
+
47
+ def _info(self):
48
+ return datasets.DatasetInfo(
49
+ description=_DESCRIPTION,
50
+ features=datasets.Features(
51
+ {
52
+ "premise": datasets.Value("string"),
53
+ "choice1": datasets.Value("string"),
54
+ "choice2": datasets.Value("string"),
55
+ "question": datasets.Value("string"),
56
+ 'label': datasets.features.ClassLabel(names=['1', '2']),
57
+ "idx": datasets.Value("int64"),
58
+ "changed": datasets.Value("bool"),
59
+ }
60
+ ),
61
+ homepage=_HOMEPAGE,
62
+ citation=_CITATION,
63
+ )
64
+
65
+ def _split_generators(self, dl_manager):
66
+ """Returns SplitGenerators."""
67
+ urls_to_download = {
68
+ "train": f"{_URL}{_TRAIN_FILE}",
69
+ "dev": f"{_URL}{_DEV_FILE}",
70
+ "test": f"{_URL}{_TEST_FILE}",
71
+ }
72
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
73
+
74
+ return [
75
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
76
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
77
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
78
+ ]
79
+
80
+ def _generate_examples(self, filepath):
81
+ with open(filepath, encoding='utf-8') as f:
82
+ for i, line in enumerate(f):
83
+ data = json.loads(line)
84
+ yield i, {
85
+ 'premise': data['premise'],
86
+ 'choice1': data['choice1'],
87
+ 'choice2': data['choice2'],
88
+ 'question': data['question'],
89
+ 'label': str(data['label']),
90
+ 'idx': data['idx'],
91
+ 'changed': data['changed']
92
+ }