file_path
stringlengths
11
79
full_name
stringlengths
2
100
traced_tactics
list
end
sequence
commit
stringclasses
4 values
url
stringclasses
4 values
start
sequence
Mathlib/MeasureTheory/Integral/CircleIntegral.lean
continuous_circleMap_inv
[ { "state_after": "E : Type ?u.59862\ninst✝ : NormedAddCommGroup E\nR : ℝ\nz w : ℂ\nhw : w ∈ ball z R\nthis : ∀ (θ : ℝ), circleMap z R θ - w ≠ 0\n⊢ Continuous fun θ => (circleMap z R θ - w)⁻¹", "state_before": "E : Type ?u.59862\ninst✝ : NormedAddCommGroup E\nR : ℝ\nz w : ℂ\nhw : w ∈ ball z R\n⊢ Continuous fun θ => (circleMap z R θ - w)⁻¹", "tactic": "have : ∀ θ, circleMap z R θ - w ≠ 0 := by\n simp_rw [sub_ne_zero]\n exact fun θ => circleMap_ne_mem_ball hw θ" }, { "state_after": "no goals", "state_before": "E : Type ?u.59862\ninst✝ : NormedAddCommGroup E\nR : ℝ\nz w : ℂ\nhw : w ∈ ball z R\nthis : ∀ (θ : ℝ), circleMap z R θ - w ≠ 0\n⊢ Continuous fun θ => (circleMap z R θ - w)⁻¹", "tactic": "exact Continuous.inv₀ (by continuity) this" }, { "state_after": "E : Type ?u.59862\ninst✝ : NormedAddCommGroup E\nR : ℝ\nz w : ℂ\nhw : w ∈ ball z R\n⊢ ∀ (θ : ℝ), circleMap z R θ ≠ w", "state_before": "E : Type ?u.59862\ninst✝ : NormedAddCommGroup E\nR : ℝ\nz w : ℂ\nhw : w ∈ ball z R\n⊢ ∀ (θ : ℝ), circleMap z R θ - w ≠ 0", "tactic": "simp_rw [sub_ne_zero]" }, { "state_after": "no goals", "state_before": "E : Type ?u.59862\ninst✝ : NormedAddCommGroup E\nR : ℝ\nz w : ℂ\nhw : w ∈ ball z R\n⊢ ∀ (θ : ℝ), circleMap z R θ ≠ w", "tactic": "exact fun θ => circleMap_ne_mem_ball hw θ" }, { "state_after": "no goals", "state_before": "E : Type ?u.59862\ninst✝ : NormedAddCommGroup E\nR : ℝ\nz w : ℂ\nhw : w ∈ ball z R\nthis : ∀ (θ : ℝ), circleMap z R θ - w ≠ 0\n⊢ Continuous fun θ => circleMap z R θ - w", "tactic": "continuity" } ]
[ 222, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 216, 1 ]
Mathlib/Data/Sym/Basic.lean
Sym.cast_cast
[]
[ 480, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 478, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.nonempty_iff_ne_empty
[]
[ 608, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 607, 1 ]
Mathlib/LinearAlgebra/ProjectiveSpace/Subspace.lean
Projectivization.Subspace.span_union
[]
[ 183, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 182, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Series.lean
Complex.sin_eq_tsum
[]
[ 101, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 99, 1 ]
Mathlib/Combinatorics/Quiver/Path.lean
Quiver.Path.length_comp
[]
[ 124, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 122, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Deriv.lean
Complex.differentiableAt_cosh
[]
[ 158, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 157, 1 ]
Mathlib/CategoryTheory/Types.lean
CategoryTheory.types_id
[]
[ 66, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 65, 1 ]
Mathlib/Topology/Instances/NNReal.lean
NNReal.summable_nat_add
[]
[ 209, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 208, 1 ]
Mathlib/Data/UnionFind.lean
UnionFind.lt_rankMax
[ { "state_after": "α : Type u_1\nself : UnionFind α\ni : ℕ\n⊢ (if h : i < size self then self.arr[i].rank else 0) < rankMax self", "state_before": "α : Type u_1\nself : UnionFind α\ni : ℕ\n⊢ rank self i < rankMax self", "tactic": "simp [rank]" }, { "state_after": "case inl\nα : Type u_1\nself : UnionFind α\ni : ℕ\nh✝ : i < size self\n⊢ self.arr[i].rank < rankMax self\n\ncase inr\nα : Type u_1\nself : UnionFind α\ni : ℕ\nh✝ : ¬i < size self\n⊢ 0 < rankMax self", "state_before": "α : Type u_1\nself : UnionFind α\ni : ℕ\n⊢ (if h : i < size self then self.arr[i].rank else 0) < rankMax self", "tactic": "split" }, { "state_after": "case inr\nα : Type u_1\nself : UnionFind α\ni : ℕ\nh✝ : ¬i < size self\n⊢ 0 < rankMax self", "state_before": "case inl\nα : Type u_1\nself : UnionFind α\ni : ℕ\nh✝ : i < size self\n⊢ self.arr[i].rank < rankMax self\n\ncase inr\nα : Type u_1\nself : UnionFind α\ni : ℕ\nh✝ : ¬i < size self\n⊢ 0 < rankMax self", "tactic": "{apply lt_rankMax'}" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nself : UnionFind α\ni : ℕ\nh✝ : ¬i < size self\n⊢ 0 < rankMax self", "tactic": "apply Nat.succ_pos" } ]
[ 195, 62 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 194, 1 ]
Mathlib/LinearAlgebra/LinearIndependent.lean
linearIndependent_iff_injective_total
[]
[ 479, 76 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 476, 1 ]
Mathlib/MeasureTheory/Integral/SetToL1.lean
MeasureTheory.setToFun_finset_sum'
[ { "state_after": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns : Finset ι\nf : ι → α → E\n⊢ (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)", "state_before": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns : Finset ι\nf : ι → α → E\nhf : ∀ (i : ι), i ∈ s → Integrable (f i)\n⊢ setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)", "tactic": "revert hf" }, { "state_after": "case refine'_1\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns : Finset ι\nf : ι → α → E\n⊢ (∀ (i : ι), i ∈ ∅ → Integrable (f i)) → setToFun μ T hT (∑ i in ∅, f i) = ∑ i in ∅, setToFun μ T hT (f i)\n\ncase refine'_2\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns : Finset ι\nf : ι → α → E\n⊢ ∀ ⦃a : ι⦄ {s : Finset ι},\n ¬a ∈ s →\n ((∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)) →\n (∀ (i : ι), i ∈ insert a s → Integrable (f i)) →\n setToFun μ T hT (∑ i in insert a s, f i) = ∑ i in insert a s, setToFun μ T hT (f i)", "state_before": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns : Finset ι\nf : ι → α → E\n⊢ (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)", "tactic": "refine' Finset.induction_on s _ _" }, { "state_after": "case refine'_1\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns : Finset ι\nf : ι → α → E\nhf✝ : ∀ (i : ι), i ∈ ∅ → Integrable (f i)\n⊢ setToFun μ T hT (∑ i in ∅, f i) = ∑ i in ∅, setToFun μ T hT (f i)", "state_before": "case refine'_1\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns : Finset ι\nf : ι → α → E\n⊢ (∀ (i : ι), i ∈ ∅ → Integrable (f i)) → setToFun μ T hT (∑ i in ∅, f i) = ∑ i in ∅, setToFun μ T hT (f i)", "tactic": "intro _" }, { "state_after": "no goals", "state_before": "case refine'_1\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns : Finset ι\nf : ι → α → E\nhf✝ : ∀ (i : ι), i ∈ ∅ → Integrable (f i)\n⊢ setToFun μ T hT (∑ i in ∅, f i) = ∑ i in ∅, setToFun μ T hT (f i)", "tactic": "simp only [setToFun_zero, Finset.sum_empty]" }, { "state_after": "case refine'_2\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns✝ : Finset ι\nf : ι → α → E\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)\nhf : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable (f i_1)\n⊢ setToFun μ T hT (∑ i in insert i s, f i) = ∑ i in insert i s, setToFun μ T hT (f i)", "state_before": "case refine'_2\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns : Finset ι\nf : ι → α → E\n⊢ ∀ ⦃a : ι⦄ {s : Finset ι},\n ¬a ∈ s →\n ((∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)) →\n (∀ (i : ι), i ∈ insert a s → Integrable (f i)) →\n setToFun μ T hT (∑ i in insert a s, f i) = ∑ i in insert a s, setToFun μ T hT (f i)", "tactic": "intro i s his ih hf" }, { "state_after": "case refine'_2\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns✝ : Finset ι\nf : ι → α → E\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)\nhf : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable (f i_1)\n⊢ setToFun μ T hT (f i + ∑ i in s, f i) = setToFun μ T hT (f i) + ∑ i in s, setToFun μ T hT (f i)", "state_before": "case refine'_2\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns✝ : Finset ι\nf : ι → α → E\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)\nhf : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable (f i_1)\n⊢ setToFun μ T hT (∑ i in insert i s, f i) = ∑ i in insert i s, setToFun μ T hT (f i)", "tactic": "simp only [his, Finset.sum_insert, not_false_iff]" }, { "state_after": "case refine'_2\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns✝ : Finset ι\nf : ι → α → E\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)\nhf : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable (f i_1)\n⊢ setToFun μ T hT (f i) + setToFun μ T hT (∑ i in s, f i) = setToFun μ T hT (f i) + ∑ i in s, setToFun μ T hT (f i)\n\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns✝ : Finset ι\nf : ι → α → E\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)\nhf : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable (f i_1)\n⊢ Integrable (∑ i in s, f i)", "state_before": "case refine'_2\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns✝ : Finset ι\nf : ι → α → E\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)\nhf : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable (f i_1)\n⊢ setToFun μ T hT (f i + ∑ i in s, f i) = setToFun μ T hT (f i) + ∑ i in s, setToFun μ T hT (f i)", "tactic": "rw [setToFun_add hT (hf i (Finset.mem_insert_self i s)) _]" }, { "state_after": "no goals", "state_before": "case refine'_2\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns✝ : Finset ι\nf : ι → α → E\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)\nhf : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable (f i_1)\n⊢ setToFun μ T hT (f i) + setToFun μ T hT (∑ i in s, f i) = setToFun μ T hT (f i) + ∑ i in s, setToFun μ T hT (f i)", "tactic": "rw [ih fun i hi => hf i (Finset.mem_insert_of_mem hi)]" }, { "state_after": "case h.e'_5.h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns✝ : Finset ι\nf : ι → α → E\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)\nhf : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable (f i_1)\nx : α\n⊢ Finset.sum s (fun i => f i) x = ∑ i in s, f i x", "state_before": "α : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns✝ : Finset ι\nf : ι → α → E\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)\nhf : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable (f i_1)\n⊢ Integrable (∑ i in s, f i)", "tactic": "convert integrable_finset_sum s fun i hi => hf i (Finset.mem_insert_of_mem hi) with x" }, { "state_after": "no goals", "state_before": "case h.e'_5.h\nα : Type u_1\nE : Type u_2\nF : Type u_3\nF' : Type ?u.1412380\nG : Type ?u.1412383\n𝕜 : Type ?u.1412386\np : ℝ≥0∞\ninst✝⁷ : NormedAddCommGroup E\ninst✝⁶ : NormedSpace ℝ E\ninst✝⁵ : NormedAddCommGroup F\ninst✝⁴ : NormedSpace ℝ F\ninst✝³ : NormedAddCommGroup F'\ninst✝² : NormedSpace ℝ F'\ninst✝¹ : NormedAddCommGroup G\nm : MeasurableSpace α\nμ : Measure α\ninst✝ : CompleteSpace F\nT T' T'' : Set α → E →L[ℝ] F\nC C' C'' : ℝ\nf✝ g : α → E\nhT : DominatedFinMeasAdditive μ T C\nι : Type u_4\ns✝ : Finset ι\nf : ι → α → E\ni : ι\ns : Finset ι\nhis : ¬i ∈ s\nih : (∀ (i : ι), i ∈ s → Integrable (f i)) → setToFun μ T hT (∑ i in s, f i) = ∑ i in s, setToFun μ T hT (f i)\nhf : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable (f i_1)\nx : α\n⊢ Finset.sum s (fun i => f i) x = ∑ i in s, f i x", "tactic": "simp" } ]
[ 1389, 11 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1377, 1 ]
Mathlib/Order/WithBot.lean
WithBot.exists
[]
[ 75, 16 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 74, 11 ]
Mathlib/Data/Set/Basic.lean
Set.insert_comm
[]
[ 1182, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1181, 1 ]
Mathlib/Topology/UniformSpace/CompactConvergence.lean
ContinuousMap.iInter_compactOpen_gen_subset_compactConvNhd
[ { "state_after": "case intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "tactic": "obtain ⟨W, hW₁, hW₄, hW₂, hW₃⟩ := comp_open_symm_mem_uniformity_sets hV" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "state_before": "case intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "tactic": "obtain ⟨Z, hZ₁, hZ₄, hZ₂, hZ₃⟩ := comp_open_symm_mem_uniformity_sets hW₁" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "tactic": "let U : α → Set α := fun x => f ⁻¹' ball (f x) Z" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "tactic": "have hU : ∀ x, IsOpen (U x) := fun x => f.continuous.isOpen_preimage _ (isOpen_ball _ hZ₄)" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "tactic": "have hUK : K ⊆ ⋃ x : K, U (x : K) := by\n intro x hx\n simp only [exists_prop, mem_iUnion, iUnion_coe_set, mem_preimage]\n exact ⟨(⟨x, hx⟩ : K), by simp [hx, mem_ball_self (f x) hZ₁]⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "tactic": "obtain ⟨t, ht⟩ := hK.elim_finite_subcover _ (fun x : K => hU x.val) hUK" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "tactic": "let C : t → Set α := fun i => K ∩ closure (U ((i : K) : α))" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "tactic": "have hC : K ⊆ ⋃ i, C i := by\n rw [← K.inter_iUnion, subset_inter_iff]\n refine' ⟨Subset.rfl, ht.trans _⟩\n simp only [SetCoe.forall, Subtype.coe_mk, iUnion_subset_iff]\n exact fun x hx₁ hx₂ => subset_iUnion_of_subset (⟨_, hx₂⟩ : t) (by simp [subset_closure])" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nhfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "tactic": "have hfC : ∀ i : t, C i ⊆ f ⁻¹' ball (f ((i : K) : α)) W := by\n simp only [← image_subset_iff, ← mem_preimage]\n rintro ⟨⟨x, hx₁⟩, hx₂⟩\n have hZW : closure (ball (f x) Z) ⊆ ball (f x) W := by\n intro y hy\n obtain ⟨z, hz₁, hz₂⟩ := UniformSpace.mem_closure_iff_ball.mp hy hZ₁\n exact ball_mono hZ₃ _ (mem_ball_comp hz₂ ((mem_ball_symmetry hZ₂).mp hz₁))\n calc\n f '' (K ∩ closure (U x)) ⊆ f '' closure (U x) := image_subset _ (inter_subset_right _ _)\n _ ⊆ closure (f '' U x) := f.continuous.continuousOn.image_closure\n _ ⊆ closure (ball (f x) Z) := by\n apply closure_mono\n simp only [image_subset_iff]\n rfl\n _ ⊆ ball (f x) W := hZW" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nhfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W\ng : C(α, β)\nhg : g ∈ ⋂ (i : { x // x ∈ t }), CompactOpen.gen (C i) ((fun i => ball (↑f ↑↑i) W) i)\nx : α\nhx : x ∈ K\n⊢ ∃ z, (↑f x, z) ∈ W ∧ (z, ↑g x) ∈ W", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nhfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W\n⊢ ∃ ι x C _hC U _hU,\n (f ∈ ⋂ (i : ι), CompactOpen.gen (C i) (U i)) ∧ (⋂ (i : ι), CompactOpen.gen (C i) (U i)) ⊆ compactConvNhd K V f", "tactic": "refine'\n ⟨t, t.fintypeCoeSort, C, fun i => hK.inter_right isClosed_closure, fun i =>\n ball (f ((i : K) : α)) W, fun i => isOpen_ball _ hW₄, by simp [CompactOpen.gen, hfC],\n fun g hg x hx => hW₃ (mem_compRel.mpr _)⟩" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nhfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W\ng : C(α, β)\nx : α\nhx : x ∈ K\nhg : ∀ (i : { x // x ∈ t }), K ∩ closure (↑f ⁻¹' ball (↑f ↑↑i) Z) ⊆ (fun a => ↑g a) ⁻¹' ball (↑f ↑↑i) W\n⊢ ∃ z, (↑f x, z) ∈ W ∧ (z, ↑g x) ∈ W", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nhfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W\ng : C(α, β)\nhg : g ∈ ⋂ (i : { x // x ∈ t }), CompactOpen.gen (C i) ((fun i => ball (↑f ↑↑i) W) i)\nx : α\nhx : x ∈ K\n⊢ ∃ z, (↑f x, z) ∈ W ∧ (z, ↑g x) ∈ W", "tactic": "simp only [mem_iInter, CompactOpen.gen, mem_setOf_eq, image_subset_iff] at hg" }, { "state_after": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nhfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W\ng : C(α, β)\nx : α\nhx : x ∈ K\nhg : ∀ (i : { x // x ∈ t }), K ∩ closure (↑f ⁻¹' ball (↑f ↑↑i) Z) ⊆ (fun a => ↑g a) ⁻¹' ball (↑f ↑↑i) W\ny : { x // x ∈ t }\nhy : x ∈ C y\n⊢ ∃ z, (↑f x, z) ∈ W ∧ (z, ↑g x) ∈ W", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nhfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W\ng : C(α, β)\nx : α\nhx : x ∈ K\nhg : ∀ (i : { x // x ∈ t }), K ∩ closure (↑f ⁻¹' ball (↑f ↑↑i) Z) ⊆ (fun a => ↑g a) ⁻¹' ball (↑f ↑↑i) W\n⊢ ∃ z, (↑f x, z) ∈ W ∧ (z, ↑g x) ∈ W", "tactic": "obtain ⟨y, hy⟩ := mem_iUnion.mp (hC hx)" }, { "state_after": "no goals", "state_before": "case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nhfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W\ng : C(α, β)\nx : α\nhx : x ∈ K\nhg : ∀ (i : { x // x ∈ t }), K ∩ closure (↑f ⁻¹' ball (↑f ↑↑i) Z) ⊆ (fun a => ↑g a) ⁻¹' ball (↑f ↑↑i) W\ny : { x // x ∈ t }\nhy : x ∈ C y\n⊢ ∃ z, (↑f x, z) ∈ W ∧ (z, ↑g x) ∈ W", "tactic": "exact ⟨f y, (mem_ball_symmetry hW₂).mp (hfC y hy), mem_preimage.mp (hg y hy)⟩" }, { "state_after": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nx : α\nhx : x ∈ K\n⊢ x ∈ ⋃ (x : ↑K), U ↑x", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\n⊢ K ⊆ ⋃ (x : ↑K), U ↑x", "tactic": "intro x hx" }, { "state_after": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nx : α\nhx : x ∈ K\n⊢ ∃ i, i ∈ K ∧ ↑f x ∈ ball (↑f i) Z", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nx : α\nhx : x ∈ K\n⊢ x ∈ ⋃ (x : ↑K), U ↑x", "tactic": "simp only [exists_prop, mem_iUnion, iUnion_coe_set, mem_preimage]" }, { "state_after": "no goals", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nx : α\nhx : x ∈ K\n⊢ ∃ i, i ∈ K ∧ ↑f x ∈ ball (↑f i) Z", "tactic": "exact ⟨(⟨x, hx⟩ : K), by simp [hx, mem_ball_self (f x) hZ₁]⟩" }, { "state_after": "no goals", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nx : α\nhx : x ∈ K\n⊢ ↑{ val := x, property := hx } ∈ K ∧ ↑f x ∈ ball (↑f ↑{ val := x, property := hx }) Z", "tactic": "simp [hx, mem_ball_self (f x) hZ₁]" }, { "state_after": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\n⊢ K ⊆ K ∧ K ⊆ ⋃ (i : { x // x ∈ t }), closure (U ↑↑i)", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\n⊢ K ⊆ ⋃ (i : { x // x ∈ t }), C i", "tactic": "rw [← K.inter_iUnion, subset_inter_iff]" }, { "state_after": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\n⊢ (⋃ (i : ↑K) (_ : i ∈ t), U ↑i) ⊆ ⋃ (i : { x // x ∈ t }), closure (U ↑↑i)", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\n⊢ K ⊆ K ∧ K ⊆ ⋃ (i : { x // x ∈ t }), closure (U ↑↑i)", "tactic": "refine' ⟨Subset.rfl, ht.trans _⟩" }, { "state_after": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\n⊢ ∀ (x : α) (h : x ∈ K),\n { val := x, property := h } ∈ t → ↑f ⁻¹' ball (↑f x) Z ⊆ ⋃ (i : { x // x ∈ t }), closure (↑f ⁻¹' ball (↑f ↑↑i) Z)", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\n⊢ (⋃ (i : ↑K) (_ : i ∈ t), U ↑i) ⊆ ⋃ (i : { x // x ∈ t }), closure (U ↑↑i)", "tactic": "simp only [SetCoe.forall, Subtype.coe_mk, iUnion_subset_iff]" }, { "state_after": "no goals", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\n⊢ ∀ (x : α) (h : x ∈ K),\n { val := x, property := h } ∈ t → ↑f ⁻¹' ball (↑f x) Z ⊆ ⋃ (i : { x // x ∈ t }), closure (↑f ⁻¹' ball (↑f ↑↑i) Z)", "tactic": "exact fun x hx₁ hx₂ => subset_iUnion_of_subset (⟨_, hx₂⟩ : t) (by simp [subset_closure])" }, { "state_after": "no goals", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\n⊢ ↑f ⁻¹' ball (↑f x) Z ⊆ closure (↑f ⁻¹' ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) Z)", "tactic": "simp [subset_closure]" }, { "state_after": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\n⊢ ∀ (i : { x // x ∈ t }), ↑f '' (K ∩ closure (↑f ⁻¹' ball (↑f ↑↑i) Z)) ⊆ ball (↑f ↑↑i) W", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\n⊢ ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W", "tactic": "simp only [← image_subset_iff, ← mem_preimage]" }, { "state_after": "case mk.mk\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\n⊢ ↑f '' (K ∩ closure (↑f ⁻¹' ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) Z)) ⊆\n ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) W", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\n⊢ ∀ (i : { x // x ∈ t }), ↑f '' (K ∩ closure (↑f ⁻¹' ball (↑f ↑↑i) Z)) ⊆ ball (↑f ↑↑i) W", "tactic": "rintro ⟨⟨x, hx₁⟩, hx₂⟩" }, { "state_after": "case mk.mk\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\nhZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W\n⊢ ↑f '' (K ∩ closure (↑f ⁻¹' ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) Z)) ⊆\n ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) W", "state_before": "case mk.mk\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\n⊢ ↑f '' (K ∩ closure (↑f ⁻¹' ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) Z)) ⊆\n ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) W", "tactic": "have hZW : closure (ball (f x) Z) ⊆ ball (f x) W := by\n intro y hy\n obtain ⟨z, hz₁, hz₂⟩ := UniformSpace.mem_closure_iff_ball.mp hy hZ₁\n exact ball_mono hZ₃ _ (mem_ball_comp hz₂ ((mem_ball_symmetry hZ₂).mp hz₁))" }, { "state_after": "no goals", "state_before": "case mk.mk\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\nhZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W\n⊢ ↑f '' (K ∩ closure (↑f ⁻¹' ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) Z)) ⊆\n ball (↑f ↑↑{ val := { val := x, property := hx₁ }, property := hx₂ }) W", "tactic": "calc\n f '' (K ∩ closure (U x)) ⊆ f '' closure (U x) := image_subset _ (inter_subset_right _ _)\n _ ⊆ closure (f '' U x) := f.continuous.continuousOn.image_closure\n _ ⊆ closure (ball (f x) Z) := by\n apply closure_mono\n simp only [image_subset_iff]\n rfl\n _ ⊆ ball (f x) W := hZW" }, { "state_after": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\ny : β\nhy : y ∈ closure (ball (↑f x) Z)\n⊢ y ∈ ball (↑f x) W", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\n⊢ closure (ball (↑f x) Z) ⊆ ball (↑f x) W", "tactic": "intro y hy" }, { "state_after": "case intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\ny : β\nhy : y ∈ closure (ball (↑f x) Z)\nz : β\nhz₁ : z ∈ ball y Z\nhz₂ : z ∈ ball (↑f x) Z\n⊢ y ∈ ball (↑f x) W", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\ny : β\nhy : y ∈ closure (ball (↑f x) Z)\n⊢ y ∈ ball (↑f x) W", "tactic": "obtain ⟨z, hz₁, hz₂⟩ := UniformSpace.mem_closure_iff_ball.mp hy hZ₁" }, { "state_after": "no goals", "state_before": "case intro.intro\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\ny : β\nhy : y ∈ closure (ball (↑f x) Z)\nz : β\nhz₁ : z ∈ ball y Z\nhz₂ : z ∈ ball (↑f x) Z\n⊢ y ∈ ball (↑f x) W", "tactic": "exact ball_mono hZ₃ _ (mem_ball_comp hz₂ ((mem_ball_symmetry hZ₂).mp hz₁))" }, { "state_after": "case h\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\nhZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W\n⊢ ↑f '' U x ⊆ ball (↑f x) Z", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\nhZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W\n⊢ closure (↑f '' U x) ⊆ closure (ball (↑f x) Z)", "tactic": "apply closure_mono" }, { "state_after": "case h\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\nhZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W\n⊢ ↑f ⁻¹' ball (↑f x) Z ⊆ (fun a => ↑f a) ⁻¹' ball (↑f x) Z", "state_before": "case h\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\nhZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W\n⊢ ↑f '' U x ⊆ ball (↑f x) Z", "tactic": "simp only [image_subset_iff]" }, { "state_after": "no goals", "state_before": "case h\nα : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nx : α\nhx₁ : x ∈ K\nhx₂ : { val := x, property := hx₁ } ∈ t\nhZW : closure (ball (↑f x) Z) ⊆ ball (↑f x) W\n⊢ ↑f ⁻¹' ball (↑f x) Z ⊆ (fun a => ↑f a) ⁻¹' ball (↑f x) Z", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "α : Type u₁\nβ : Type u₂\ninst✝¹ : TopologicalSpace α\ninst✝ : UniformSpace β\nK : Set α\nV : Set (β × β)\nf : C(α, β)\nhK : IsCompact K\nhV : V ∈ 𝓤 β\nW : Set (β × β)\nhW₁ : W ∈ 𝓤 β\nhW₄ : IsOpen W\nhW₂ : SymmetricRel W\nhW₃ : W ○ W ⊆ V\nZ : Set (β × β)\nhZ₁ : Z ∈ 𝓤 β\nhZ₄ : IsOpen Z\nhZ₂ : SymmetricRel Z\nhZ₃ : Z ○ Z ⊆ W\nU : α → Set α := fun x => ↑f ⁻¹' ball (↑f x) Z\nhU : ∀ (x : α), IsOpen (U x)\nhUK : K ⊆ ⋃ (x : ↑K), U ↑x\nt : Finset ↑K\nht : K ⊆ ⋃ (i : ↑K) (_ : i ∈ t), U ↑i\nC : { x // x ∈ t } → Set α := fun i => K ∩ closure (U ↑↑i)\nhC : K ⊆ ⋃ (i : { x // x ∈ t }), C i\nhfC : ∀ (i : { x // x ∈ t }), C i ⊆ ↑f ⁻¹' ball (↑f ↑↑i) W\n⊢ f ∈ ⋂ (i : { x // x ∈ t }), CompactOpen.gen (C i) ((fun i => ball (↑f ↑↑i) W) i)", "tactic": "simp [CompactOpen.gen, hfC]" } ]
[ 267, 80 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 225, 1 ]
Mathlib/FieldTheory/PerfectClosure.lean
coe_frobeniusEquiv
[]
[ 57, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 56, 1 ]
Mathlib/Analysis/SpecialFunctions/Integrals.lean
integral_cos_mul_complex
[ { "state_after": "case hderiv\na✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x\n\ncase hint\na✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ IntervalIntegrable (fun y => Complex.cos (z * ↑y)) MeasureTheory.volume a b", "state_before": "a✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ (∫ (x : ℝ) in a..b, Complex.cos (z * ↑x)) = Complex.sin (z * ↑b) / z - Complex.sin (z * ↑a) / z", "tactic": "apply integral_eq_sub_of_hasDerivAt" }, { "state_after": "case hint\na✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ IntervalIntegrable (fun y => Complex.cos (z * ↑y)) MeasureTheory.volume a b\n\ncase hderiv\na✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "state_before": "case hderiv\na✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x\n\ncase hint\na✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ IntervalIntegrable (fun y => Complex.cos (z * ↑y)) MeasureTheory.volume a b", "tactic": "swap" }, { "state_after": "case hderiv\na✝¹ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b x : ℝ\na✝ : x ∈ [[a, b]]\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "state_before": "case hderiv\na✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ ∀ (x : ℝ), x ∈ [[a, b]] → HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "tactic": "intro x _" }, { "state_after": "case hderiv\na✝² b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b x : ℝ\na✝ : x ∈ [[a✝¹, b]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "state_before": "case hderiv\na✝¹ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b x : ℝ\na✝ : x ∈ [[a, b]]\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "tactic": "have a := Complex.hasDerivAt_sin (↑x * z)" }, { "state_after": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "state_before": "case hderiv\na✝² b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b x : ℝ\na✝ : x ∈ [[a✝¹, b]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "tactic": "have b : HasDerivAt (fun y => y * z : ℂ → ℂ) z ↑x := hasDerivAt_mul_const _" }, { "state_after": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "state_before": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "tactic": "have c : HasDerivAt (fun y : ℂ => Complex.sin (y * z)) _ ↑x := HasDerivAt.comp (𝕜 := ℂ) x a b" }, { "state_after": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (↑y * z) / z) (Complex.cos (↑x * z) * z / z) x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "state_before": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "tactic": "have d := HasDerivAt.comp_ofReal (c.div_const z)" }, { "state_after": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "state_before": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (↑y * z) / z) (Complex.cos (↑x * z) * z / z) x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "tactic": "simp only [mul_comm] at d" }, { "state_after": "case h.e'_7\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x\n⊢ Complex.cos (z * ↑x) = z * Complex.cos (z * ↑x) / z", "state_before": "case hderiv\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x\n⊢ HasDerivAt (fun b => Complex.sin (z * ↑b) / z) (Complex.cos (z * ↑x)) x", "tactic": "convert d using 1" }, { "state_after": "case h.e'_7\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x\n⊢ Complex.cos (z * ↑x) = Complex.cos (z * ↑x) * z / z", "state_before": "case h.e'_7\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x\n⊢ Complex.cos (z * ↑x) = z * Complex.cos (z * ↑x) / z", "tactic": "conv_rhs => arg 1; rw [mul_comm]" }, { "state_after": "no goals", "state_before": "case h.e'_7\na✝² b✝¹ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na✝¹ b✝ x : ℝ\na✝ : x ∈ [[a✝¹, b✝]]\na : HasDerivAt Complex.sin (Complex.cos (↑x * z)) (↑x * z)\nb : HasDerivAt (fun y => y * z) z ↑x\nc : HasDerivAt (fun y => Complex.sin (y * z)) (Complex.cos (↑x * z) * z) ↑x\nd : HasDerivAt (fun y => Complex.sin (z * ↑y) / z) (z * Complex.cos (z * ↑x) / z) x\n⊢ Complex.cos (z * ↑x) = Complex.cos (z * ↑x) * z / z", "tactic": "rw [mul_div_cancel _ hz]" }, { "state_after": "case hint.hu\na✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ Continuous fun y => Complex.cos (z * ↑y)", "state_before": "case hint\na✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ IntervalIntegrable (fun y => Complex.cos (z * ↑y)) MeasureTheory.volume a b", "tactic": "apply Continuous.intervalIntegrable" }, { "state_after": "no goals", "state_before": "case hint.hu\na✝ b✝ : ℝ\nn : ℕ\nz : ℂ\nhz : z ≠ 0\na b : ℝ\n⊢ Continuous fun y => Complex.cos (z * ↑y)", "tactic": "exact Complex.continuous_cos.comp (continuous_const.mul Complex.continuous_ofReal)" } ]
[ 531, 27 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 517, 1 ]
Mathlib/Analysis/SpecialFunctions/Log/Base.lean
Real.le_logb_iff_rpow_le
[ { "state_after": "no goals", "state_before": "b x y : ℝ\nhb : 1 < b\nhy : 0 < y\n⊢ x ≤ logb b y ↔ b ^ x ≤ y", "tactic": "rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy]" } ]
[ 172, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 171, 1 ]
Mathlib/Analysis/NormedSpace/PiLp.lean
PiLp.equiv_symm_apply
[]
[ 112, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 111, 1 ]
Mathlib/Dynamics/Ergodic/MeasurePreserving.lean
MeasureTheory.MeasurePreserving.iterate
[]
[ 136, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 133, 11 ]
Mathlib/Algebra/Support.lean
Function.support_inv
[]
[ 385, 41 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 384, 1 ]
Mathlib/Analysis/Convex/Between.lean
Wbtw.rotate_iff
[ { "state_after": "no goals", "state_before": "R : Type u_1\nV : Type u_2\nV' : Type ?u.222353\nP : Type u_3\nP' : Type ?u.222359\ninst✝⁷ : OrderedRing R\ninst✝⁶ : AddCommGroup V\ninst✝⁵ : Module R V\ninst✝⁴ : AddTorsor V P\ninst✝³ : AddCommGroup V'\ninst✝² : Module R V'\ninst✝¹ : AddTorsor V' P'\ninst✝ : NoZeroSMulDivisors R V\nx y z : P\nh : Wbtw R x y z\n⊢ Wbtw R z x y ↔ x = y", "tactic": "rw [← wbtw_rotate_iff R x, and_iff_right h]" } ]
[ 400, 75 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 399, 1 ]
Mathlib/Order/Chain.lean
chainClosure_succ_total
[ { "state_after": "case succ\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃ s t : Set α\na b x y : α\ns✝ : Set α\na✝ : ChainClosure r s✝\na_ih✝ : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ s✝ → s✝ = c₁ ∨ SuccChain r c₁ ⊆ s✝\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ SuccChain r s✝\n⊢ SuccChain r s✝ = c₁ ∨ SuccChain r c₁ ⊆ SuccChain r s✝\n\ncase union\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃ s t : Set α\na b x y : α\ns✝ : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s✝ → ChainClosure r a\na_ih✝ : ∀ (a : Set α), a ∈ s✝ → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ ⋃₀ s✝\n⊢ ⋃₀ s✝ = c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s✝", "state_before": "α : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₁ c₂ c₃ s t : Set α\na b x y : α\nhc₁ : ChainClosure r c₁\nhc₂ : ChainClosure r c₂\nh : c₁ ⊆ c₂\n⊢ c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂", "tactic": "induction hc₂ generalizing c₁ hc₁" }, { "state_after": "α : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂✝ c₃ s t : Set α\na b x y : α\nc₂ : Set α\na✝ : ChainClosure r c₂\nih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ SuccChain r c₂\nh₁ : c₁ ⊆ c₂\n⊢ SuccChain r c₁ ⊆ SuccChain r c₂", "state_before": "α : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂✝ c₃ s t : Set α\na b x y : α\nc₂ : Set α\na✝ : ChainClosure r c₂\nih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ SuccChain r c₂\n⊢ SuccChain r c₂ = c₁ ∨ SuccChain r c₁ ⊆ SuccChain r c₂", "tactic": "refine' ((chainClosure_succ_total_aux hc₁) fun c₁ => ih).imp h.antisymm' fun h₁ => _" }, { "state_after": "case inl\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂✝ c₃ s t : Set α\na b x y : α\nc₂ : Set α\na✝ : ChainClosure r c₂\nih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂\nhc₁ : ChainClosure r c₂\nh : c₂ ⊆ SuccChain r c₂\nh₁ : c₂ ⊆ c₂\n⊢ SuccChain r c₂ ⊆ SuccChain r c₂\n\ncase inr\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂✝ c₃ s t : Set α\na b x y : α\nc₂ : Set α\na✝ : ChainClosure r c₂\nih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ SuccChain r c₂\nh₁ : c₁ ⊆ c₂\nh₂ : SuccChain r c₁ ⊆ c₂\n⊢ SuccChain r c₁ ⊆ SuccChain r c₂", "state_before": "α : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂✝ c₃ s t : Set α\na b x y : α\nc₂ : Set α\na✝ : ChainClosure r c₂\nih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ SuccChain r c₂\nh₁ : c₁ ⊆ c₂\n⊢ SuccChain r c₁ ⊆ SuccChain r c₂", "tactic": "obtain rfl | h₂ := ih hc₁ h₁" }, { "state_after": "no goals", "state_before": "case inl\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂✝ c₃ s t : Set α\na b x y : α\nc₂ : Set α\na✝ : ChainClosure r c₂\nih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂\nhc₁ : ChainClosure r c₂\nh : c₂ ⊆ SuccChain r c₂\nh₁ : c₂ ⊆ c₂\n⊢ SuccChain r c₂ ⊆ SuccChain r c₂", "tactic": "exact Subset.rfl" }, { "state_after": "no goals", "state_before": "case inr\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂✝ c₃ s t : Set α\na b x y : α\nc₂ : Set α\na✝ : ChainClosure r c₂\nih : ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ c₂ → c₂ = c₁ ∨ SuccChain r c₁ ⊆ c₂\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ SuccChain r c₂\nh₁ : c₁ ⊆ c₂\nh₂ : SuccChain r c₁ ⊆ c₂\n⊢ SuccChain r c₁ ⊆ SuccChain r c₂", "tactic": "exact h₂.trans subset_succChain" }, { "state_after": "α : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ ⋃₀ s\n⊢ ⋃₀ s ⊆ c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s", "state_before": "α : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ ⋃₀ s\n⊢ ⋃₀ s = c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s", "tactic": "apply Or.imp_left h.antisymm'" }, { "state_after": "case a\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ ⋃₀ s\n⊢ ¬(⋃₀ s ⊆ c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s) → False", "state_before": "α : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ ⋃₀ s\n⊢ ⋃₀ s ⊆ c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s", "tactic": "apply by_contradiction" }, { "state_after": "case a\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ ⋃₀ s\n⊢ ∀ (x : Set α), x ∈ s → ¬x ⊆ c₁ → ¬SuccChain r c₁ ⊆ ⋃₀ s → False", "state_before": "case a\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ ⋃₀ s\n⊢ ¬(⋃₀ s ⊆ c₁ ∨ SuccChain r c₁ ⊆ ⋃₀ s) → False", "tactic": "simp only [sUnion_subset_iff, not_or, not_forall, exists_prop, and_imp, forall_exists_index]" }, { "state_after": "case a\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃✝ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ ⋃₀ s\nc₃ : Set α\nhc₃ : c₃ ∈ s\nh₁ : ¬c₃ ⊆ c₁\nh₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s\n⊢ False", "state_before": "case a\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ ⋃₀ s\n⊢ ∀ (x : Set α), x ∈ s → ¬x ⊆ c₁ → ¬SuccChain r c₁ ⊆ ⋃₀ s → False", "tactic": "intro c₃ hc₃ h₁ h₂" }, { "state_after": "case a.inl\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃✝ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh✝ : c₁ ⊆ ⋃₀ s\nc₃ : Set α\nhc₃ : c₃ ∈ s\nh₁ : ¬c₃ ⊆ c₁\nh₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s\nh : SuccChain r c₃ ⊆ c₁\n⊢ False\n\ncase a.inr\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃✝ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh✝ : c₁ ⊆ ⋃₀ s\nc₃ : Set α\nhc₃ : c₃ ∈ s\nh₁ : ¬c₃ ⊆ c₁\nh₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s\nh : c₁ ⊆ c₃\n⊢ False", "state_before": "case a\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃✝ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh : c₁ ⊆ ⋃₀ s\nc₃ : Set α\nhc₃ : c₃ ∈ s\nh₁ : ¬c₃ ⊆ c₁\nh₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s\n⊢ False", "tactic": "obtain h | h := chainClosure_succ_total_aux hc₁ fun c₄ => ih _ hc₃" }, { "state_after": "case a.inr.inl\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃✝ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh✝ : c₁ ⊆ ⋃₀ s\nc₃ : Set α\nhc₃ : c₃ ∈ s\nh₁ : ¬c₃ ⊆ c₁\nh₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s\nh : c₁ ⊆ c₃\nh' : c₃ = c₁\n⊢ False\n\ncase a.inr.inr\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃✝ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh✝ : c₁ ⊆ ⋃₀ s\nc₃ : Set α\nhc₃ : c₃ ∈ s\nh₁ : ¬c₃ ⊆ c₁\nh₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s\nh : c₁ ⊆ c₃\nh' : SuccChain r c₁ ⊆ c₃\n⊢ False", "state_before": "case a.inr\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃✝ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh✝ : c₁ ⊆ ⋃₀ s\nc₃ : Set α\nhc₃ : c₃ ∈ s\nh₁ : ¬c₃ ⊆ c₁\nh₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s\nh : c₁ ⊆ c₃\n⊢ False", "tactic": "obtain h' | h' := ih c₃ hc₃ hc₁ h" }, { "state_after": "no goals", "state_before": "case a.inl\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃✝ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh✝ : c₁ ⊆ ⋃₀ s\nc₃ : Set α\nhc₃ : c₃ ∈ s\nh₁ : ¬c₃ ⊆ c₁\nh₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s\nh : SuccChain r c₃ ⊆ c₁\n⊢ False", "tactic": "exact h₁ (subset_succChain.trans h)" }, { "state_after": "no goals", "state_before": "case a.inr.inl\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃✝ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh✝ : c₁ ⊆ ⋃₀ s\nc₃ : Set α\nhc₃ : c₃ ∈ s\nh₁ : ¬c₃ ⊆ c₁\nh₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s\nh : c₁ ⊆ c₃\nh' : c₃ = c₁\n⊢ False", "tactic": "exact h₁ h'.subset" }, { "state_after": "no goals", "state_before": "case a.inr.inr\nα : Type u_1\nβ : Type ?u.11677\nr : α → α → Prop\nc c₂ c₃✝ s✝ t : Set α\na b x y : α\ns : Set (Set α)\na✝ : ∀ (a : Set α), a ∈ s → ChainClosure r a\nih : ∀ (a : Set α), a ∈ s → ∀ {c₁ : Set α}, ChainClosure r c₁ → c₁ ⊆ a → a = c₁ ∨ SuccChain r c₁ ⊆ a\nc₁ : Set α\nhc₁ : ChainClosure r c₁\nh✝ : c₁ ⊆ ⋃₀ s\nc₃ : Set α\nhc₃ : c₃ ∈ s\nh₁ : ¬c₃ ⊆ c₁\nh₂ : ¬SuccChain r c₁ ⊆ ⋃₀ s\nh : c₁ ⊆ c₃\nh' : SuccChain r c₁ ⊆ c₃\n⊢ False", "tactic": "exact h₂ (h'.trans <| subset_sUnion_of_mem hc₃)" } ]
[ 243, 54 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 226, 9 ]
Mathlib/Data/Set/Sups.lean
Set.sups_subset_right
[]
[ 94, 22 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/GroupTheory/Submonoid/Pointwise.lean
AddSubmonoid.pointwise_smul_le_pointwise_smul_iff₀
[]
[ 466, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 464, 1 ]
Mathlib/Data/Set/Function.lean
Set.BijOn.image_eq
[]
[ 970, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 969, 1 ]
Std/Data/Int/DivMod.lean
Int.eq_div_of_mul_eq_right
[]
[ 749, 47 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 747, 11 ]
Mathlib/LinearAlgebra/Matrix/Symmetric.lean
Matrix.isSymm_zero
[]
[ 78, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 77, 1 ]
Mathlib/Data/Nat/Totient.lean
Nat.totient_pos
[ { "state_after": "no goals", "state_before": "⊢ 0 < 0 → 0 < φ 0", "tactic": "decide" }, { "state_after": "no goals", "state_before": "⊢ 0 < 1 → 0 < φ 1", "tactic": "simp [totient]" }, { "state_after": "no goals", "state_before": "n : ℕ\nx✝ : 0 < n + 2\n⊢ 1 < n + 2", "tactic": "simp" } ]
[ 76, 96 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Data/Real/ENNReal.lean
ENNReal.le_sub_of_add_le_right
[]
[ 1165, 44 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1164, 1 ]
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
collinear_insert_insert_of_mem_affineSpan_pair
[ { "state_after": "k : Type u_2\nV : Type u_3\nP : Type u_1\nι : Type ?u.323622\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\np₁ p₂ p₃ p₄ : P\nh₁ : p₁ ∈ affineSpan k {p₃, p₄}\nh₂ : p₂ ∈ affineSpan k {p₃, p₄}\n⊢ Collinear k {p₃, p₄}", "state_before": "k : Type u_2\nV : Type u_3\nP : Type u_1\nι : Type ?u.323622\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\np₁ p₂ p₃ p₄ : P\nh₁ : p₁ ∈ affineSpan k {p₃, p₄}\nh₂ : p₂ ∈ affineSpan k {p₃, p₄}\n⊢ Collinear k {p₁, p₂, p₃, p₄}", "tactic": "rw [collinear_insert_iff_of_mem_affineSpan\n ((AffineSubspace.le_def' _ _).1 (affineSpan_mono k (Set.subset_insert _ _)) _ h₁),\n collinear_insert_iff_of_mem_affineSpan h₂]" }, { "state_after": "no goals", "state_before": "k : Type u_2\nV : Type u_3\nP : Type u_1\nι : Type ?u.323622\ninst✝³ : DivisionRing k\ninst✝² : AddCommGroup V\ninst✝¹ : Module k V\ninst✝ : AffineSpace V P\np₁ p₂ p₃ p₄ : P\nh₁ : p₁ ∈ affineSpan k {p₃, p₄}\nh₂ : p₂ ∈ affineSpan k {p₃, p₄}\n⊢ Collinear k {p₃, p₄}", "tactic": "exact collinear_pair _ _ _" } ]
[ 568, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 563, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Angle.lean
Real.Angle.sign_coe_neg_pi_div_two
[ { "state_after": "no goals", "state_before": "⊢ sign ↑(-π / 2) = -1", "tactic": "rw [sign, sin_coe, neg_div, Real.sin_neg, sin_pi_div_two, Left.sign_neg, sign_one]" } ]
[ 976, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 975, 1 ]
Mathlib/Data/Real/EReal.lean
EReal.add_lt_add_right_coe
[]
[ 689, 74 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 688, 1 ]
Mathlib/Data/Finset/Image.lean
Finset.map_disjiUnion
[]
[ 281, 39 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 277, 1 ]
Mathlib/LinearAlgebra/QuadraticForm/Basic.lean
QuadraticForm.coe_copy
[]
[ 194, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 193, 1 ]
Mathlib/Topology/Algebra/Order/Floor.lean
tendsto_ceil_left_pure_ceil
[]
[ 83, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 80, 1 ]
Mathlib/LinearAlgebra/TensorPower.lean
TensorPower.algebraMap₀_eq_smul_one
[ { "state_after": "R : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nr : R\n⊢ r • ↑(tprod R) isEmptyElim = r • GradedMonoid.GOne.one", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nr : R\n⊢ ↑algebraMap₀ r = r • GradedMonoid.GOne.one", "tactic": "simp [algebraMap₀]" }, { "state_after": "no goals", "state_before": "R : Type u_1\nM : Type u_2\ninst✝² : CommSemiring R\ninst✝¹ : AddCommMonoid M\ninst✝ : Module R M\nr : R\n⊢ r • ↑(tprod R) isEmptyElim = r • GradedMonoid.GOne.one", "tactic": "congr" } ]
[ 237, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 236, 1 ]
Mathlib/Algebra/Order/Monoid/Canonical/Defs.lean
le_mul_right
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : CanonicallyOrderedMonoid α\na b c d : α\nh : a ≤ b\n⊢ a = a * 1", "tactic": "simp" } ]
[ 283, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 280, 1 ]
Mathlib/MeasureTheory/Integral/CircleIntegral.lean
circleIntegral.integral_eq_zero_of_hasDerivWithinAt
[]
[ 487, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 485, 1 ]
Mathlib/CategoryTheory/Functor/Category.lean
CategoryTheory.NatTrans.id_hcomp_app
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝² : Category C\nD : Type u₂\ninst✝¹ : Category D\nE : Type u₃\ninst✝ : Category E\nF G H✝ I : C ⥤ D\nH : E ⥤ C\nα : F ⟶ G\nX : E\n⊢ (𝟙 H ◫ α).app X = α.app (H.obj X)", "tactic": "simp" } ]
[ 124, 92 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 124, 1 ]
Mathlib/Topology/LocalHomeomorph.lean
LocalHomeomorph.IsImage.iff_symm_preimage_eq
[]
[ 519, 38 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 518, 1 ]
Mathlib/Topology/Category/Profinite/Basic.lean
FintypeCat.discreteTopology
[]
[ 235, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 234, 1 ]
Mathlib/CategoryTheory/Limits/Shapes/Pullbacks.lean
CategoryTheory.Limits.pushout.inr_desc
[]
[ 1194, 21 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1192, 1 ]
Mathlib/Order/RelClasses.lean
WellFoundedGT.induction
[]
[ 440, 28 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 439, 1 ]
Mathlib/Algebra/Category/ModuleCat/Adjunctions.lean
ModuleCat.Free.ε_apply
[]
[ 83, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 82, 1 ]
Mathlib/Topology/UniformSpace/Cauchy.lean
Cauchy.comap'
[]
[ 162, 14 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 159, 1 ]
Mathlib/Data/MvPolynomial/Variables.lean
MvPolynomial.vars_prod
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.166872\nr : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns : Finset ι\nf : ι → MvPolynomial σ R\n⊢ vars (∏ i in s, f i) ⊆ Finset.biUnion s fun i => vars (f i)", "tactic": "classical\ninduction s using Finset.induction_on with\n| empty => simp\n| insert hs hsub =>\n simp only [hs, Finset.biUnion_insert, Finset.prod_insert, not_false_iff]\n apply Finset.Subset.trans (vars_mul _ _)\n exact Finset.union_subset_union (Finset.Subset.refl _) hsub" }, { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.166872\nr : R\ne : ℕ\nn m : σ\ns✝ : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\ns : Finset ι\nf : ι → MvPolynomial σ R\n⊢ vars (∏ i in s, f i) ⊆ Finset.biUnion s fun i => vars (f i)", "tactic": "induction s using Finset.induction_on with\n| empty => simp\n| insert hs hsub =>\n simp only [hs, Finset.biUnion_insert, Finset.prod_insert, not_false_iff]\n apply Finset.Subset.trans (vars_mul _ _)\n exact Finset.union_subset_union (Finset.Subset.refl _) hsub" }, { "state_after": "no goals", "state_before": "case empty\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.166872\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\nf : ι → MvPolynomial σ R\n⊢ vars (∏ i in ∅, f i) ⊆ Finset.biUnion ∅ fun i => vars (f i)", "tactic": "simp" }, { "state_after": "case insert\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.166872\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\nf : ι → MvPolynomial σ R\na✝ : ι\ns✝ : Finset ι\nhs : ¬a✝ ∈ s✝\nhsub : vars (∏ i in s✝, f i) ⊆ Finset.biUnion s✝ fun i => vars (f i)\n⊢ vars (f a✝ * ∏ i in s✝, f i) ⊆ vars (f a✝) ∪ Finset.biUnion s✝ fun i => vars (f i)", "state_before": "case insert\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.166872\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\nf : ι → MvPolynomial σ R\na✝ : ι\ns✝ : Finset ι\nhs : ¬a✝ ∈ s✝\nhsub : vars (∏ i in s✝, f i) ⊆ Finset.biUnion s✝ fun i => vars (f i)\n⊢ vars (∏ i in insert a✝ s✝, f i) ⊆ Finset.biUnion (insert a✝ s✝) fun i => vars (f i)", "tactic": "simp only [hs, Finset.biUnion_insert, Finset.prod_insert, not_false_iff]" }, { "state_after": "case insert\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.166872\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\nf : ι → MvPolynomial σ R\na✝ : ι\ns✝ : Finset ι\nhs : ¬a✝ ∈ s✝\nhsub : vars (∏ i in s✝, f i) ⊆ Finset.biUnion s✝ fun i => vars (f i)\n⊢ vars (f a✝) ∪ vars (∏ i in s✝, f i) ⊆ vars (f a✝) ∪ Finset.biUnion s✝ fun i => vars (f i)", "state_before": "case insert\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.166872\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\nf : ι → MvPolynomial σ R\na✝ : ι\ns✝ : Finset ι\nhs : ¬a✝ ∈ s✝\nhsub : vars (∏ i in s✝, f i) ⊆ Finset.biUnion s✝ fun i => vars (f i)\n⊢ vars (f a✝ * ∏ i in s✝, f i) ⊆ vars (f a✝) ∪ Finset.biUnion s✝ fun i => vars (f i)", "tactic": "apply Finset.Subset.trans (vars_mul _ _)" }, { "state_after": "no goals", "state_before": "case insert\nR : Type u\nS : Type v\nσ : Type u_2\nτ : Type ?u.166872\nr : R\ne : ℕ\nn m : σ\ns : σ →₀ ℕ\ninst✝¹ : CommSemiring R\np q : MvPolynomial σ R\nι : Type u_1\ninst✝ : DecidableEq σ\nf : ι → MvPolynomial σ R\na✝ : ι\ns✝ : Finset ι\nhs : ¬a✝ ∈ s✝\nhsub : vars (∏ i in s✝, f i) ⊆ Finset.biUnion s✝ fun i => vars (f i)\n⊢ vars (f a✝) ∪ vars (∏ i in s✝, f i) ⊆ vars (f a✝) ∪ Finset.biUnion s✝ fun i => vars (f i)", "tactic": "exact Finset.union_subset_union (Finset.Subset.refl _) hsub" } ]
[ 392, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 384, 1 ]
Mathlib/Order/Concept.lean
intentClosure_empty
[]
[ 87, 42 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 86, 1 ]
Mathlib/Analysis/Complex/Isometry.lean
rotationOf_rotation
[ { "state_after": "no goals", "state_before": "a : { x // x ∈ circle }\n⊢ ↑(rotationOf (↑rotation a)) = ↑a", "tactic": "simp" } ]
[ 86, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 85, 1 ]
Mathlib/RingTheory/Algebraic.lean
Algebra.isAlgebraic_iff_isIntegral
[]
[ 200, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 198, 11 ]
Mathlib/Topology/LocalAtTarget.lean
Set.restrictPreimage_openEmbedding
[]
[ 55, 86 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 52, 1 ]
Mathlib/Analysis/BoxIntegral/Partition/Tagged.lean
BoxIntegral.TaggedPrepartition.IsSubordinate.infPrepartition
[]
[ 273, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 271, 1 ]
Mathlib/Order/RelIso/Basic.lean
RelIso.cast_refl
[]
[ 764, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 762, 11 ]
Mathlib/Algebra/Group/Units.lean
IsUnit.mul_val_inv
[ { "state_after": "α : Type u\nM : Type u_1\nN : Type ?u.65932\ninst✝ : Monoid M\na b c : M\nh : IsUnit a\n⊢ a * ↑(IsUnit.unit h)⁻¹ = ↑(IsUnit.unit h) * ↑(IsUnit.unit h)⁻¹", "state_before": "α : Type u\nM : Type u_1\nN : Type ?u.65932\ninst✝ : Monoid M\na b c : M\nh : IsUnit a\n⊢ a * ↑(IsUnit.unit h)⁻¹ = 1", "tactic": "rw [←h.unit.mul_inv]" }, { "state_after": "no goals", "state_before": "α : Type u\nM : Type u_1\nN : Type ?u.65932\ninst✝ : Monoid M\na b c : M\nh : IsUnit a\n⊢ a * ↑(IsUnit.unit h)⁻¹ = ↑(IsUnit.unit h) * ↑(IsUnit.unit h)⁻¹", "tactic": "congr" } ]
[ 756, 30 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 755, 1 ]
Mathlib/CategoryTheory/Products/Bifunctor.lean
CategoryTheory.Bifunctor.map_id_comp
[ { "state_after": "no goals", "state_before": "C : Type u₁\nD : Type u₂\nE : Type u₃\ninst✝² : Category C\ninst✝¹ : Category D\ninst✝ : Category E\nF : C × D ⥤ E\nW : C\nX Y Z : D\nf : X ⟶ Y\ng : Y ⟶ Z\n⊢ F.map (𝟙 W, f ≫ g) = F.map (𝟙 W, f) ≫ F.map (𝟙 W, g)", "tactic": "rw [← Functor.map_comp, prod_comp, Category.comp_id]" } ]
[ 38, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 35, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineMap.span_eq_top_of_surjective
[ { "state_after": "no goals", "state_before": "k : Type u_5\nV₁ : Type u_3\nP₁ : Type u_1\nV₂ : Type u_4\nP₂ : Type u_2\nV₃ : Type ?u.579305\nP₃ : Type ?u.579308\ninst✝⁹ : Ring k\ninst✝⁸ : AddCommGroup V₁\ninst✝⁷ : Module k V₁\ninst✝⁶ : AffineSpace V₁ P₁\ninst✝⁵ : AddCommGroup V₂\ninst✝⁴ : Module k V₂\ninst✝³ : AffineSpace V₂ P₂\ninst✝² : AddCommGroup V₃\ninst✝¹ : Module k V₃\ninst✝ : AffineSpace V₃ P₃\nf : P₁ →ᵃ[k] P₂\ns : Set P₁\nhf : Function.Surjective ↑f\nh : affineSpan k s = ⊤\n⊢ affineSpan k (↑f '' s) = ⊤", "tactic": "rw [← AffineSubspace.map_span, h, map_top_of_surjective f hf]" } ]
[ 1586, 64 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1584, 1 ]
Mathlib/SetTheory/Game/PGame.lean
PGame.neg_lf_zero_iff
[ { "state_after": "no goals", "state_before": "x : PGame\n⊢ -x ⧏ 0 ↔ 0 ⧏ x", "tactic": "rw [neg_lf_iff, neg_zero]" } ]
[ 1380, 85 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1380, 1 ]
Mathlib/Data/List/Duplicate.lean
List.duplicate_cons_iff
[ { "state_after": "case refine'_1\nα : Type u_1\nl : List α\nx y : α\nh : x ∈+ y :: l\n⊢ y = x ∧ x ∈ l ∨ x ∈+ l\n\ncase refine'_2\nα : Type u_1\nl : List α\nx y : α\nh : y = x ∧ x ∈ l ∨ x ∈+ l\n⊢ x ∈+ y :: l", "state_before": "α : Type u_1\nl : List α\nx y : α\n⊢ x ∈+ y :: l ↔ y = x ∧ x ∈ l ∨ x ∈+ l", "tactic": "refine' ⟨fun h => _, fun h => _⟩" }, { "state_after": "case refine'_1.cons_mem\nα : Type u_1\nl : List α\nx : α\nhm : x ∈ l\n⊢ x = x ∧ x ∈ l ∨ x ∈+ l\n\ncase refine'_1.cons_duplicate\nα : Type u_1\nl : List α\nx y : α\nhm : x ∈+ l\n⊢ y = x ∧ x ∈ l ∨ x ∈+ l", "state_before": "case refine'_1\nα : Type u_1\nl : List α\nx y : α\nh : x ∈+ y :: l\n⊢ y = x ∧ x ∈ l ∨ x ∈+ l", "tactic": "cases' h with _ hm _ _ hm" }, { "state_after": "no goals", "state_before": "case refine'_1.cons_mem\nα : Type u_1\nl : List α\nx : α\nhm : x ∈ l\n⊢ x = x ∧ x ∈ l ∨ x ∈+ l", "tactic": "exact Or.inl ⟨rfl, hm⟩" }, { "state_after": "no goals", "state_before": "case refine'_1.cons_duplicate\nα : Type u_1\nl : List α\nx y : α\nhm : x ∈+ l\n⊢ y = x ∧ x ∈ l ∨ x ∈+ l", "tactic": "exact Or.inr hm" }, { "state_after": "case refine'_2.inl.intro.refl\nα : Type u_1\nl : List α\nx : α\nright✝ : x ∈ l\n⊢ x ∈+ x :: l\n\ncase refine'_2.inr\nα : Type u_1\nl : List α\nx y : α\nh : x ∈+ l\n⊢ x ∈+ y :: l", "state_before": "case refine'_2\nα : Type u_1\nl : List α\nx y : α\nh : y = x ∧ x ∈ l ∨ x ∈+ l\n⊢ x ∈+ y :: l", "tactic": "rcases h with (⟨rfl | h⟩ | h)" }, { "state_after": "no goals", "state_before": "case refine'_2.inl.intro.refl\nα : Type u_1\nl : List α\nx : α\nright✝ : x ∈ l\n⊢ x ∈+ x :: l", "tactic": "simpa" }, { "state_after": "no goals", "state_before": "case refine'_2.inr\nα : Type u_1\nl : List α\nx y : α\nh : x ∈+ l\n⊢ x ∈+ y :: l", "tactic": "exact h.cons_duplicate" } ]
[ 99, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 92, 1 ]
Mathlib/Topology/Bornology/Basic.lean
Bornology.isCobounded_biInter_finset
[]
[ 270, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 268, 1 ]
Std/Data/List/Lemmas.lean
List.next?_cons
[]
[ 457, 74 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 457, 9 ]
Mathlib/Data/Real/Hyperreal.lean
Hyperreal.infinite_iff_not_exists_st
[]
[ 342, 45 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 341, 1 ]
Mathlib/SetTheory/Cardinal/Cofinality.lean
Cardinal.derivBFamily_lt_ord
[ { "state_after": "no goals", "state_before": "α : Type ?u.167917\nr : α → α → Prop\no : Ordinal\nf : (a : Ordinal) → a < o → Ordinal → Ordinal\nc : Cardinal\nhc : IsRegular c\nhι : card o < c\nhc' : c ≠ ℵ₀\nhf : ∀ (i : Ordinal) (hi : i < o) (b : Ordinal), b < ord c → f i hi b < ord c\na : Ordinal\n⊢ lift (card o) < c", "tactic": "rwa [lift_id]" } ]
[ 1198, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1195, 1 ]
Mathlib/Algebra/Lie/Submodule.lean
LieSubmodule.submodule_span_le_lieSpan
[ { "state_after": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\ns : Set M\n⊢ s ⊆ ↑↑(lieSpan R L s)", "state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\ns : Set M\n⊢ Submodule.span R s ≤ ↑(lieSpan R L s)", "tactic": "rw [Submodule.span_le]" }, { "state_after": "no goals", "state_before": "R : Type u\nL : Type v\nM : Type w\ninst✝⁶ : CommRing R\ninst✝⁵ : LieRing L\ninst✝⁴ : LieAlgebra R L\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : LieRingModule L M\ninst✝ : LieModule R L M\nN N' : LieSubmodule R L M\nI J : LieIdeal R L\ns : Set M\n⊢ s ⊆ ↑↑(lieSpan R L s)", "tactic": "apply subset_lieSpan" } ]
[ 624, 23 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 622, 1 ]
Mathlib/Algebra/Associated.lean
Associates.quot_mk_eq_mk
[]
[ 758, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 757, 1 ]
Mathlib/Combinatorics/SimpleGraph/DegreeSum.lean
SimpleGraph.sum_degrees_eq_twice_card_edges
[]
[ 116, 72 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 1 ]
Mathlib/FieldTheory/PerfectClosure.lean
PerfectClosure.quot_mk_eq_mk
[]
[ 163, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 162, 1 ]
Mathlib/Computability/Partrec.lean
Computable.fin_app
[]
[ 399, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 398, 1 ]
Mathlib/Analysis/InnerProductSpace/Projection.lean
maximal_orthonormal_iff_orthogonalComplement_eq_bot
[ { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∀ (u : Set E), u ⊇ v → Orthonormal 𝕜 Subtype.val → u = v) ↔ ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∀ (u : Set E), u ⊇ v → Orthonormal 𝕜 Subtype.val → u = v) ↔ (span 𝕜 v)ᗮ = ⊥", "tactic": "rw [Submodule.eq_bot_iff]" }, { "state_after": "case mp\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∀ (u : Set E), u ⊇ v → Orthonormal 𝕜 Subtype.val → u = v) → ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\n\ncase mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0) → ∀ (u : Set E), u ⊇ v → Orthonormal 𝕜 Subtype.val → u = v", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∀ (u : Set E), u ⊇ v → Orthonormal 𝕜 Subtype.val → u = v) ↔ ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0", "tactic": "constructor" }, { "state_after": "case mp\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∃ x, x ∈ (span 𝕜 v)ᗮ ∧ x ≠ 0) → ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "state_before": "case mp\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∀ (u : Set E), u ⊇ v → Orthonormal 𝕜 Subtype.val → u = v) → ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0", "tactic": "contrapose!" }, { "state_after": "case mp.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\n⊢ ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "state_before": "case mp\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∃ x, x ∈ (span 𝕜 v)ᗮ ∧ x ≠ 0) → ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "tactic": "rintro ⟨x, hx', hx⟩" }, { "state_after": "case mp.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\n⊢ ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "state_before": "case mp.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\n⊢ ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "tactic": "let e := (‖x‖⁻¹ : 𝕜) • x" }, { "state_after": "case mp.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\n⊢ ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "state_before": "case mp.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\n⊢ ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "tactic": "have he : ‖e‖ = 1 := by simp [norm_smul_inv_norm hx]" }, { "state_after": "case mp.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\n⊢ ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "state_before": "case mp.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\n⊢ ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "tactic": "have he' : e ∈ (span 𝕜 v)ᗮ := smul_mem' _ _ hx'" }, { "state_after": "case mp.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\n⊢ ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "state_before": "case mp.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\n⊢ ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "tactic": "have he'' : e ∉ v := by\n intro hev\n have : e = 0 := by\n have : e ∈ span 𝕜 v ⊓ (span 𝕜 v)ᗮ := ⟨subset_span hev, he'⟩\n simpa [(span 𝕜 v).inf_orthogonal_eq_bot] using this\n have : e ≠ 0 := hv.ne_zero ⟨e, hev⟩\n contradiction" }, { "state_after": "case mp.intro.intro.refine'_1\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\n⊢ ∀ (i : { x // x ∈ insert e v }), ‖↑i‖ = 1\n\ncase mp.intro.intro.refine'_2\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\n⊢ ∀ {i j : { x // x ∈ insert e v }}, i ≠ j → inner ↑i ↑j = 0", "state_before": "case mp.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\n⊢ ∃ u, u ⊇ v ∧ Orthonormal 𝕜 Subtype.val ∧ u ≠ v", "tactic": "refine' ⟨insert e v, v.subset_insert e, ⟨_, _⟩, (ne_insert_of_not_mem v he'').symm⟩" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\n⊢ ‖e‖ = 1", "tactic": "simp [norm_smul_inv_norm hx]" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhev : e ∈ v\n⊢ False", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\n⊢ ¬e ∈ v", "tactic": "intro hev" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhev : e ∈ v\nthis : e = 0\n⊢ False", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhev : e ∈ v\n⊢ False", "tactic": "have : e = 0 := by\n have : e ∈ span 𝕜 v ⊓ (span 𝕜 v)ᗮ := ⟨subset_span hev, he'⟩\n simpa [(span 𝕜 v).inf_orthogonal_eq_bot] using this" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhev : e ∈ v\nthis✝ : e = 0\nthis : e ≠ 0\n⊢ False", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhev : e ∈ v\nthis : e = 0\n⊢ False", "tactic": "have : e ≠ 0 := hv.ne_zero ⟨e, hev⟩" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhev : e ∈ v\nthis✝ : e = 0\nthis : e ≠ 0\n⊢ False", "tactic": "contradiction" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhev : e ∈ v\nthis : e ∈ span 𝕜 v ⊓ (span 𝕜 v)ᗮ\n⊢ e = 0", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhev : e ∈ v\n⊢ e = 0", "tactic": "have : e ∈ span 𝕜 v ⊓ (span 𝕜 v)ᗮ := ⟨subset_span hev, he'⟩" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhev : e ∈ v\nthis : e ∈ span 𝕜 v ⊓ (span 𝕜 v)ᗮ\n⊢ e = 0", "tactic": "simpa [(span 𝕜 v).inf_orthogonal_eq_bot] using this" }, { "state_after": "case mp.intro.intro.refine'_1.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\na : E\nha' : a ∈ insert e v\n⊢ ‖↑{ val := a, property := ha' }‖ = 1", "state_before": "case mp.intro.intro.refine'_1\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\n⊢ ∀ (i : { x // x ∈ insert e v }), ‖↑i‖ = 1", "tactic": "rintro ⟨a, ha'⟩" }, { "state_after": "case mp.intro.intro.refine'_1.mk.inl\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\na : E\nha' : a ∈ insert e v\nha : a = e\n⊢ ‖↑{ val := a, property := ha' }‖ = 1\n\ncase mp.intro.intro.refine'_1.mk.inr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\na : E\nha' : a ∈ insert e v\nha : a ∈ v\n⊢ ‖↑{ val := a, property := ha' }‖ = 1", "state_before": "case mp.intro.intro.refine'_1.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\na : E\nha' : a ∈ insert e v\n⊢ ‖↑{ val := a, property := ha' }‖ = 1", "tactic": "cases' eq_or_mem_of_mem_insert ha' with ha ha" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.refine'_1.mk.inl\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\na : E\nha' : a ∈ insert e v\nha : a = e\n⊢ ‖↑{ val := a, property := ha' }‖ = 1", "tactic": "simp [ha, he]" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.refine'_1.mk.inr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\na : E\nha' : a ∈ insert e v\nha : a ∈ v\n⊢ ‖↑{ val := a, property := ha' }‖ = 1", "tactic": "exact hv.1 ⟨a, ha⟩" }, { "state_after": "case mp.intro.intro.refine'_2\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\n⊢ ∀ {i j : { x // x ∈ insert e v }}, i ≠ j → inner ↑i ↑j = 0", "state_before": "case mp.intro.intro.refine'_2\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\n⊢ ∀ {i j : { x // x ∈ insert e v }}, i ≠ j → inner ↑i ↑j = 0", "tactic": "have h_end : ∀ a ∈ v, ⟪a, e⟫ = 0 := by\n intro a ha\n exact he' a (Submodule.subset_span ha)" }, { "state_after": "case mp.intro.intro.refine'_2.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\n⊢ ∀ {j : { x // x ∈ insert e v }}, { val := a, property := ha' } ≠ j → inner ↑{ val := a, property := ha' } ↑j = 0", "state_before": "case mp.intro.intro.refine'_2\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\n⊢ ∀ {i j : { x // x ∈ insert e v }}, i ≠ j → inner ↑i ↑j = 0", "tactic": "rintro ⟨a, ha'⟩" }, { "state_after": "case mp.intro.intro.refine'_2.mk.inl\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\n⊢ ∀ {j : { x // x ∈ insert e v }}, { val := a, property := ha' } ≠ j → inner ↑{ val := a, property := ha' } ↑j = 0\n\ncase mp.intro.intro.refine'_2.mk.inr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\n⊢ ∀ {j : { x // x ∈ insert e v }}, { val := a, property := ha' } ≠ j → inner ↑{ val := a, property := ha' } ↑j = 0", "state_before": "case mp.intro.intro.refine'_2.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\n⊢ ∀ {j : { x // x ∈ insert e v }}, { val := a, property := ha' } ≠ j → inner ↑{ val := a, property := ha' } ↑j = 0", "tactic": "cases' eq_or_mem_of_mem_insert ha' with ha ha" }, { "state_after": "case mp.intro.intro.refine'_2.mk.inr.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "state_before": "case mp.intro.intro.refine'_2.mk.inr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\n⊢ ∀ {j : { x // x ∈ insert e v }}, { val := a, property := ha' } ≠ j → inner ↑{ val := a, property := ha' } ↑j = 0", "tactic": "rintro ⟨b, hb'⟩ hab'" }, { "state_after": "case mp.intro.intro.refine'_2.mk.inr.mk.inl\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b = e\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0\n\ncase mp.intro.intro.refine'_2.mk.inr.mk.inr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "state_before": "case mp.intro.intro.refine'_2.mk.inr.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "tactic": "cases' eq_or_mem_of_mem_insert hb' with hb hb" }, { "state_after": "case mp.intro.intro.refine'_2.mk.inr.mk.inr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\nthis : { val := a, property := ha } ≠ { val := b, property := hb }\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "state_before": "case mp.intro.intro.refine'_2.mk.inr.mk.inr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "tactic": "have : (⟨a, ha⟩ : v) ≠ ⟨b, hb⟩ := by\n intro hab''\n apply hab'\n simpa using hab''" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.refine'_2.mk.inr.mk.inr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\nthis : { val := a, property := ha } ≠ { val := b, property := hb }\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "tactic": "exact hv.2 this" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\na : E\nha : a ∈ v\n⊢ inner a e = 0", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\n⊢ ∀ (a : E), a ∈ v → inner a e = 0", "tactic": "intro a ha" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\na : E\nha : a ∈ v\n⊢ inner a e = 0", "tactic": "exact he' a (Submodule.subset_span ha)" }, { "state_after": "case mp.intro.intro.refine'_2.mk.inl.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "state_before": "case mp.intro.intro.refine'_2.mk.inl\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\n⊢ ∀ {j : { x // x ∈ insert e v }}, { val := a, property := ha' } ≠ j → inner ↑{ val := a, property := ha' } ↑j = 0", "tactic": "rintro ⟨b, hb'⟩ hab'" }, { "state_after": "case mp.intro.intro.refine'_2.mk.inl.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "state_before": "case mp.intro.intro.refine'_2.mk.inl.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "tactic": "have hb : b ∈ v := by\n refine' mem_of_mem_insert_of_ne hb' _\n intro hbe'\n apply hab'\n simp [ha, hbe']" }, { "state_after": "case mp.intro.intro.refine'_2.mk.inl.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\n⊢ inner ↑{ val := b, property := hb' } ↑{ val := a, property := ha' } = 0", "state_before": "case mp.intro.intro.refine'_2.mk.inl.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "tactic": "rw [inner_eq_zero_symm]" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.refine'_2.mk.inl.mk\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\n⊢ inner ↑{ val := b, property := hb' } ↑{ val := a, property := ha' } = 0", "tactic": "simpa [ha] using h_end b hb" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\n⊢ b ≠ e", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\n⊢ b ∈ v", "tactic": "refine' mem_of_mem_insert_of_ne hb' _" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhbe' : b = e\n⊢ False", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\n⊢ b ≠ e", "tactic": "intro hbe'" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhbe' : b = e\n⊢ { val := a, property := ha' } = { val := b, property := hb' }", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhbe' : b = e\n⊢ False", "tactic": "apply hab'" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a = e\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhbe' : b = e\n⊢ { val := a, property := ha' } = { val := b, property := hb' }", "tactic": "simp [ha, hbe']" }, { "state_after": "no goals", "state_before": "case mp.intro.intro.refine'_2.mk.inr.mk.inl\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b = e\n⊢ inner ↑{ val := a, property := ha' } ↑{ val := b, property := hb' } = 0", "tactic": "simpa [hb] using h_end a ha" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\nhab'' : { val := a, property := ha } = { val := b, property := hb }\n⊢ False", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\n⊢ { val := a, property := ha } ≠ { val := b, property := hb }", "tactic": "intro hab''" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\nhab'' : { val := a, property := ha } = { val := b, property := hb }\n⊢ { val := a, property := ha' } = { val := b, property := hb' }", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\nhab'' : { val := a, property := ha } = { val := b, property := hb }\n⊢ False", "tactic": "apply hab'" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nx : E\nhx' : x ∈ (span 𝕜 v)ᗮ\nhx : x ≠ 0\ne : E := (↑‖x‖)⁻¹ • x\nhe : ‖e‖ = 1\nhe' : e ∈ (span 𝕜 v)ᗮ\nhe'' : ¬e ∈ v\nh_end : ∀ (a : E), a ∈ v → inner a e = 0\na : E\nha' : a ∈ insert e v\nha : a ∈ v\nb : E\nhb' : b ∈ insert e v\nhab' : { val := a, property := ha' } ≠ { val := b, property := hb' }\nhb : b ∈ v\nhab'' : { val := a, property := ha } = { val := b, property := hb }\n⊢ { val := a, property := ha' } = { val := b, property := hb' }", "tactic": "simpa using hab''" }, { "state_after": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0) → ∀ (u : Set E), u ⊇ v → Orthonormal 𝕜 Subtype.val → u ⊆ v ∧ v ⊆ u", "state_before": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0) → ∀ (u : Set E), u ⊇ v → Orthonormal 𝕜 Subtype.val → u = v", "tactic": "simp only [Subset.antisymm_iff]" }, { "state_after": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\n⊢ u ⊆ v ∧ v ⊆ u", "state_before": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\n⊢ (∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0) → ∀ (u : Set E), u ⊇ v → Orthonormal 𝕜 Subtype.val → u ⊆ v ∧ v ⊆ u", "tactic": "rintro h u (huv : v ⊆ u) hu" }, { "state_after": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\n⊢ u ⊆ v", "state_before": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\n⊢ u ⊆ v ∧ v ⊆ u", "tactic": "refine' ⟨_, huv⟩" }, { "state_after": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\n⊢ x ∈ v", "state_before": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\n⊢ u ⊆ v", "tactic": "intro x hxu" }, { "state_after": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\n⊢ ¬x ∈ v → x ∈ (span 𝕜 v)ᗮ", "state_before": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\n⊢ x ∈ v", "tactic": "refine' ((mt (h x)) (hu.ne_zero ⟨x, hxu⟩)).imp_symm _" }, { "state_after": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\nhxv : ¬x ∈ v\ny : E\nhy : y ∈ span 𝕜 v\n⊢ inner y x = 0", "state_before": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\n⊢ ¬x ∈ v → x ∈ (span 𝕜 v)ᗮ", "tactic": "intro hxv y hy" }, { "state_after": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\nhxv : ¬x ∈ v\ny : E\nhy : y ∈ span 𝕜 v\nhxv' : ¬{ val := x, property := hxu } ∈ Subtype.val ⁻¹' v\n⊢ inner y x = 0", "state_before": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\nhxv : ¬x ∈ v\ny : E\nhy : y ∈ span 𝕜 v\n⊢ inner y x = 0", "tactic": "have hxv' : (⟨x, hxu⟩ : u) ∉ ((↑) ⁻¹' v : Set u) := by simp [huv, hxv]" }, { "state_after": "case mpr.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\nhxv : ¬x ∈ v\nhxv' : ¬{ val := x, property := hxu } ∈ Subtype.val ⁻¹' v\nl : ↑u →₀ 𝕜\nhy : ↑(Finsupp.total (↑u) E 𝕜 Subtype.val) l ∈ span 𝕜 v\nhl : l ∈ Finsupp.supported 𝕜 𝕜 (?m.1124382 (↑(Finsupp.total (↑u) E 𝕜 Subtype.val) l) hy l ⁻¹' v)\n⊢ inner (↑(Finsupp.total (↑u) E 𝕜 Subtype.val) l) x = 0", "state_before": "case mpr\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\nhxv : ¬x ∈ v\ny : E\nhy : y ∈ span 𝕜 v\nhxv' : ¬{ val := x, property := hxu } ∈ Subtype.val ⁻¹' v\n⊢ inner y x = 0", "tactic": "obtain ⟨l, hl, rfl⟩ :\n ∃ l ∈ Finsupp.supported 𝕜 𝕜 ((↑) ⁻¹' v : Set u), (Finsupp.total (↥u) E 𝕜 (↑)) l = y := by\n rw [← Finsupp.mem_span_image_iff_total]\n simp [huv, inter_eq_self_of_subset_left, hy]" }, { "state_after": "no goals", "state_before": "case mpr.intro.intro\n𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\nhxv : ¬x ∈ v\nhxv' : ¬{ val := x, property := hxu } ∈ Subtype.val ⁻¹' v\nl : ↑u →₀ 𝕜\nhy : ↑(Finsupp.total (↑u) E 𝕜 Subtype.val) l ∈ span 𝕜 v\nhl : l ∈ Finsupp.supported 𝕜 𝕜 (?m.1124382 (↑(Finsupp.total (↑u) E 𝕜 Subtype.val) l) hy l ⁻¹' v)\n⊢ inner (↑(Finsupp.total (↑u) E 𝕜 Subtype.val) l) x = 0", "tactic": "exact hu.inner_finsupp_eq_zero hxv' hl" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\nhxv : ¬x ∈ v\ny : E\nhy : y ∈ span 𝕜 v\n⊢ ¬{ val := x, property := hxu } ∈ Subtype.val ⁻¹' v", "tactic": "simp [huv, hxv]" }, { "state_after": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\nhxv : ¬x ∈ v\ny : E\nhy : y ∈ span 𝕜 v\nhxv' : ¬{ val := x, property := hxu } ∈ Subtype.val ⁻¹' v\n⊢ y ∈ span 𝕜 (Subtype.val '' (Subtype.val ⁻¹' v))", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\nhxv : ¬x ∈ v\ny : E\nhy : y ∈ span 𝕜 v\nhxv' : ¬{ val := x, property := hxu } ∈ Subtype.val ⁻¹' v\n⊢ ∃ l, l ∈ Finsupp.supported 𝕜 𝕜 (Subtype.val ⁻¹' v) ∧ ↑(Finsupp.total (↑u) E 𝕜 Subtype.val) l = y", "tactic": "rw [← Finsupp.mem_span_image_iff_total]" }, { "state_after": "no goals", "state_before": "𝕜 : Type u_1\nE : Type u_2\nF : Type ?u.1095350\ninst✝⁴ : IsROrC 𝕜\ninst✝³ : NormedAddCommGroup E\ninst✝² : NormedAddCommGroup F\ninst✝¹ : InnerProductSpace 𝕜 E\ninst✝ : InnerProductSpace ℝ F\nK : Submodule 𝕜 E\nv : Set E\nhv : Orthonormal 𝕜 Subtype.val\nh : ∀ (x : E), x ∈ (span 𝕜 v)ᗮ → x = 0\nu : Set E\nhuv : v ⊆ u\nhu : Orthonormal 𝕜 Subtype.val\nx : E\nhxu : x ∈ u\nhxv : ¬x ∈ v\ny : E\nhy : y ∈ span 𝕜 v\nhxv' : ¬{ val := x, property := hxu } ∈ Subtype.val ⁻¹' v\n⊢ y ∈ span 𝕜 (Subtype.val '' (Subtype.val ⁻¹' v))", "tactic": "simp [huv, inter_eq_self_of_subset_left, hy]" } ]
[ 1328, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1269, 1 ]
Mathlib/Data/Polynomial/AlgebraMap.lean
Polynomial.dvd_term_of_isRoot_of_dvd_terms
[]
[ 469, 66 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 467, 1 ]
Std/Data/Int/Lemmas.lean
Int.add_le_of_le_sub_right
[ { "state_after": "a b c : Int\nh✝ : a ≤ c - b\nh : a + b ≤ c - b + b\n⊢ a + b ≤ c", "state_before": "a b c : Int\nh : a ≤ c - b\n⊢ a + b ≤ c", "tactic": "have h := Int.add_le_add_right h b" }, { "state_after": "no goals", "state_before": "a b c : Int\nh✝ : a ≤ c - b\nh : a + b ≤ c - b + b\n⊢ a + b ≤ c", "tactic": "rwa [Int.sub_add_cancel] at h" } ]
[ 968, 32 ]
e68aa8f5fe47aad78987df45f99094afbcb5e936
https://github.com/leanprover/std4
[ 966, 11 ]
Mathlib/LinearAlgebra/Dimension.lean
rank_pos_iff_exists_ne_zero
[ { "state_after": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.253674\nR : Type u\nM : Type v\ninst✝⁴ : Ring R\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : NoZeroSMulDivisors R M\ninst✝ : Nontrivial R\n⊢ ¬0 < Module.rank R M ↔ ¬∃ x, x ≠ 0", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.253674\nR : Type u\nM : Type v\ninst✝⁴ : Ring R\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : NoZeroSMulDivisors R M\ninst✝ : Nontrivial R\n⊢ 0 < Module.rank R M ↔ ∃ x, x ≠ 0", "tactic": "rw [← not_iff_not]" }, { "state_after": "no goals", "state_before": "K : Type u\nV V₁ V₂ V₃ : Type v\nV' V'₁ : Type v'\nV'' : Type v''\nι : Type w\nι' : Type w'\nη : Type u₁'\nφ : η → Type ?u.253674\nR : Type u\nM : Type v\ninst✝⁴ : Ring R\ninst✝³ : AddCommGroup M\ninst✝² : Module R M\ninst✝¹ : NoZeroSMulDivisors R M\ninst✝ : Nontrivial R\n⊢ ¬0 < Module.rank R M ↔ ¬∃ x, x ≠ 0", "tactic": "simpa using rank_zero_iff_forall_zero" } ]
[ 522, 40 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 520, 1 ]
Mathlib/RingTheory/Polynomial/Basic.lean
Polynomial.coeff_restriction
[ { "state_after": "R : Type u\nS : Type ?u.66016\ninst✝ : Ring R\np : R[X]\nn : ℕ\n⊢ ↑(if coeff p n = 0 then 0 else { val := coeff p n, property := (_ : coeff p n ∈ Subring.closure ↑(frange p)) }) =\n coeff p n", "state_before": "R : Type u\nS : Type ?u.66016\ninst✝ : Ring R\np : R[X]\nn : ℕ\n⊢ ↑(coeff (restriction p) n) = coeff p n", "tactic": "simp only [restriction, coeff_monomial, finset_sum_coeff, mem_support_iff, Finset.sum_ite_eq',\n Ne.def, ite_not]" }, { "state_after": "case inl\nR : Type u\nS : Type ?u.66016\ninst✝ : Ring R\np : R[X]\nn : ℕ\nh : coeff p n = 0\n⊢ ↑0 = coeff p n\n\ncase inr\nR : Type u\nS : Type ?u.66016\ninst✝ : Ring R\np : R[X]\nn : ℕ\nh : ¬coeff p n = 0\n⊢ ↑{ val := coeff p n, property := (_ : coeff p n ∈ Subring.closure ↑(frange p)) } = coeff p n", "state_before": "R : Type u\nS : Type ?u.66016\ninst✝ : Ring R\np : R[X]\nn : ℕ\n⊢ ↑(if coeff p n = 0 then 0 else { val := coeff p n, property := (_ : coeff p n ∈ Subring.closure ↑(frange p)) }) =\n coeff p n", "tactic": "split_ifs with h" }, { "state_after": "case inl\nR : Type u\nS : Type ?u.66016\ninst✝ : Ring R\np : R[X]\nn : ℕ\nh : coeff p n = 0\n⊢ ↑0 = 0", "state_before": "case inl\nR : Type u\nS : Type ?u.66016\ninst✝ : Ring R\np : R[X]\nn : ℕ\nh : coeff p n = 0\n⊢ ↑0 = coeff p n", "tactic": "rw [h]" }, { "state_after": "no goals", "state_before": "case inl\nR : Type u\nS : Type ?u.66016\ninst✝ : Ring R\np : R[X]\nn : ℕ\nh : coeff p n = 0\n⊢ ↑0 = 0", "tactic": "rfl" }, { "state_after": "no goals", "state_before": "case inr\nR : Type u\nS : Type ?u.66016\ninst✝ : Ring R\np : R[X]\nn : ℕ\nh : ¬coeff p n = 0\n⊢ ↑{ val := coeff p n, property := (_ : coeff p n ∈ Subring.closure ↑(frange p)) } = coeff p n", "tactic": "rfl" } ]
[ 283, 8 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 277, 1 ]
Mathlib/Combinatorics/SimpleGraph/IncMatrix.lean
SimpleGraph.sum_incMatrix_apply_of_mem_edgeSet
[ { "state_after": "no goals", "state_before": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na b : α\ne : Sym2 α\n⊢ e ∈ edgeSet G → ∑ a : α, incMatrix R G a e = 2", "tactic": "classical\n refine' e.ind _\n intro a b h\n rw [mem_edgeSet] at h\n rw [← Nat.cast_two, ← card_doubleton h.ne]\n simp only [incMatrix_apply', sum_boole, mk'_mem_incidenceSet_iff, h, true_and_iff]\n congr 2\n ext e\n simp only [mem_filter, mem_univ, true_and_iff, mem_insert, mem_singleton]" }, { "state_after": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na b : α\ne : Sym2 α\n⊢ ∀ (x y : α),\n Quotient.mk (Rel.setoid α) (x, y) ∈ edgeSet G → ∑ a : α, incMatrix R G a (Quotient.mk (Rel.setoid α) (x, y)) = 2", "state_before": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na b : α\ne : Sym2 α\n⊢ e ∈ edgeSet G → ∑ a : α, incMatrix R G a e = 2", "tactic": "refine' e.ind _" }, { "state_after": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne : Sym2 α\na b : α\nh : Quotient.mk (Rel.setoid α) (a, b) ∈ edgeSet G\n⊢ ∑ a_1 : α, incMatrix R G a_1 (Quotient.mk (Rel.setoid α) (a, b)) = 2", "state_before": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na b : α\ne : Sym2 α\n⊢ ∀ (x y : α),\n Quotient.mk (Rel.setoid α) (x, y) ∈ edgeSet G → ∑ a : α, incMatrix R G a (Quotient.mk (Rel.setoid α) (x, y)) = 2", "tactic": "intro a b h" }, { "state_after": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne : Sym2 α\na b : α\nh : Adj G a b\n⊢ ∑ a_1 : α, incMatrix R G a_1 (Quotient.mk (Rel.setoid α) (a, b)) = 2", "state_before": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne : Sym2 α\na b : α\nh : Quotient.mk (Rel.setoid α) (a, b) ∈ edgeSet G\n⊢ ∑ a_1 : α, incMatrix R G a_1 (Quotient.mk (Rel.setoid α) (a, b)) = 2", "tactic": "rw [mem_edgeSet] at h" }, { "state_after": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne : Sym2 α\na b : α\nh : Adj G a b\n⊢ ∑ a_1 : α, incMatrix R G a_1 (Quotient.mk (Rel.setoid α) (a, b)) = ↑(card {a, b})", "state_before": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne : Sym2 α\na b : α\nh : Adj G a b\n⊢ ∑ a_1 : α, incMatrix R G a_1 (Quotient.mk (Rel.setoid α) (a, b)) = 2", "tactic": "rw [← Nat.cast_two, ← card_doubleton h.ne]" }, { "state_after": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne : Sym2 α\na b : α\nh : Adj G a b\n⊢ ↑(card (filter (fun x => x = a ∨ x = b) univ)) = ↑(card {a, b})", "state_before": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne : Sym2 α\na b : α\nh : Adj G a b\n⊢ ∑ a_1 : α, incMatrix R G a_1 (Quotient.mk (Rel.setoid α) (a, b)) = ↑(card {a, b})", "tactic": "simp only [incMatrix_apply', sum_boole, mk'_mem_incidenceSet_iff, h, true_and_iff]" }, { "state_after": "case e_a.e_s\nR : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne : Sym2 α\na b : α\nh : Adj G a b\n⊢ filter (fun x => x = a ∨ x = b) univ = {a, b}", "state_before": "R : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne : Sym2 α\na b : α\nh : Adj G a b\n⊢ ↑(card (filter (fun x => x = a ∨ x = b) univ)) = ↑(card {a, b})", "tactic": "congr 2" }, { "state_after": "case e_a.e_s.a\nR : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne✝ : Sym2 α\na b : α\nh : Adj G a b\ne : α\n⊢ e ∈ filter (fun x => x = a ∨ x = b) univ ↔ e ∈ {a, b}", "state_before": "case e_a.e_s\nR : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne : Sym2 α\na b : α\nh : Adj G a b\n⊢ filter (fun x => x = a ∨ x = b) univ = {a, b}", "tactic": "ext e" }, { "state_after": "no goals", "state_before": "case e_a.e_s.a\nR : Type u_2\nα : Type u_1\nG : SimpleGraph α\ninst✝¹ : Fintype α\ninst✝ : NonAssocSemiring R\na✝ b✝ : α\ne✝ : Sym2 α\na b : α\nh : Adj G a b\ne : α\n⊢ e ∈ filter (fun x => x = a ∨ x = b) univ ↔ e ∈ {a, b}", "tactic": "simp only [mem_filter, mem_univ, true_and_iff, mem_insert, mem_singleton]" } ]
[ 145, 78 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 135, 1 ]
Mathlib/Data/List/Cycle.lean
Cycle.mem_reverse_iff
[]
[ 558, 43 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 557, 1 ]
Mathlib/Data/Polynomial/FieldDivision.lean
Polynomial.eval₂_gcd_eq_zero
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nk : Type y\nA : Type z\na b : R\nn : ℕ\ninst✝¹ : Field R\np q : R[X]\ninst✝ : CommSemiring k\nϕ : R →+* k\nf g : R[X]\nα : k\nhf : eval₂ ϕ α f = 0\nhg : eval₂ ϕ α g = 0\n⊢ eval₂ ϕ α (EuclideanDomain.gcd f g) = 0", "tactic": "rw [EuclideanDomain.gcd_eq_gcd_ab f g, Polynomial.eval₂_add, Polynomial.eval₂_mul,\n Polynomial.eval₂_mul, hf, hg, MulZeroClass.zero_mul, MulZeroClass.zero_mul, zero_add]" } ]
[ 329, 90 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 326, 1 ]
Mathlib/RingTheory/AdjoinRoot.lean
AdjoinRoot.mk_ne_zero_of_natDegree_lt
[]
[ 224, 55 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 222, 1 ]
Mathlib/FieldTheory/Subfield.lean
Subfield.coe_iSup_of_directed
[ { "state_after": "no goals", "state_before": "K : Type u\nL : Type v\nM : Type w\ninst✝² : Field K\ninst✝¹ : Field L\ninst✝ : Field M\nι : Sort u_1\nhι : Nonempty ι\nS : ι → Subfield K\nhS : Directed (fun x x_1 => x ≤ x_1) S\nx : K\n⊢ x ∈ ↑(⨆ (i : ι), S i) ↔ x ∈ ⋃ (i : ι), ↑(S i)", "tactic": "simp [mem_iSup_of_directed hS]" } ]
[ 839, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 837, 1 ]
Mathlib/Analysis/Calculus/Deriv/Mul.lean
derivWithin_smul
[]
[ 82, 65 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 79, 1 ]
Mathlib/Algebra/ContinuedFractions/Translations.lean
GeneralizedContinuedFraction.convergent_eq_conts_a_div_conts_b
[]
[ 110, 6 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 108, 1 ]
Mathlib/Analysis/Normed/Group/Hom.lean
NormedAddGroupHom.Equalizer.norm_map_le
[]
[ 1003, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1001, 1 ]
Mathlib/Analysis/Calculus/LocalExtr.lean
IsLocalMaxOn.fderivWithin_eq_zero
[ { "state_after": "E : Type u\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nf : E → ℝ\na : E\nf' : E →L[ℝ] ℝ\ns : Set E\nh : IsLocalMaxOn f s a\ny : E\nhy : y ∈ posTangentConeAt s a\nhy' : -y ∈ posTangentConeAt s a\nhf : ¬DifferentiableWithinAt ℝ f s a\n⊢ ↑0 y = 0", "state_before": "E : Type u\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nf : E → ℝ\na : E\nf' : E →L[ℝ] ℝ\ns : Set E\nh : IsLocalMaxOn f s a\ny : E\nhy : y ∈ posTangentConeAt s a\nhy' : -y ∈ posTangentConeAt s a\nhf : ¬DifferentiableWithinAt ℝ f s a\n⊢ ↑(fderivWithin ℝ f s a) y = 0", "tactic": "rw [fderivWithin_zero_of_not_differentiableWithinAt hf]" }, { "state_after": "no goals", "state_before": "E : Type u\ninst✝¹ : NormedAddCommGroup E\ninst✝ : NormedSpace ℝ E\nf : E → ℝ\na : E\nf' : E →L[ℝ] ℝ\ns : Set E\nh : IsLocalMaxOn f s a\ny : E\nhy : y ∈ posTangentConeAt s a\nhy' : -y ∈ posTangentConeAt s a\nhf : ¬DifferentiableWithinAt ℝ f s a\n⊢ ↑0 y = 0", "tactic": "rfl" } ]
[ 152, 71 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 147, 1 ]
Mathlib/MeasureTheory/Group/Action.lean
MeasureTheory.measure_preimage_smul
[]
[ 180, 63 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 179, 1 ]
Mathlib/Data/Polynomial/Degree/Lemmas.lean
Polynomial.natDegree_C_mul_le
[ { "state_after": "no goals", "state_before": "R : Type u\nS : Type v\nι : Type w\na✝ b : R\nm n : ℕ\ninst✝ : Semiring R\np q r : R[X]\na : R\nf : R[X]\n⊢ natDegree (↑C a) + natDegree f = 0 + natDegree f", "tactic": "rw [natDegree_C a]" } ]
[ 97, 34 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 93, 1 ]
Mathlib/LinearAlgebra/AffineSpace/AffineSubspace.lean
AffineSubspace.sup_direction_le
[ { "state_after": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\ns1 s2 : AffineSubspace k P\n⊢ Submodule.span k (↑s1 -ᵥ ↑s1) ⊔ Submodule.span k (↑s2 -ᵥ ↑s2) ≤ Submodule.span k (↑(s1 ⊔ s2) -ᵥ ↑(s1 ⊔ s2))", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\ns1 s2 : AffineSubspace k P\n⊢ direction s1 ⊔ direction s2 ≤ direction (s1 ⊔ s2)", "tactic": "simp only [direction_eq_vectorSpan, vectorSpan_def]" }, { "state_after": "no goals", "state_before": "k : Type u_1\nV : Type u_2\nP : Type u_3\ninst✝² : Ring k\ninst✝¹ : AddCommGroup V\ninst✝ : Module k V\nS : AffineSpace V P\np₁ p₂ : P\ns1 s2 : AffineSubspace k P\n⊢ Submodule.span k (↑s1 -ᵥ ↑s1) ⊔ Submodule.span k (↑s2 -ᵥ ↑s2) ≤ Submodule.span k (↑(s1 ⊔ s2) -ᵥ ↑(s1 ⊔ s2))", "tactic": "exact\n sup_le\n (sInf_le_sInf fun p hp => Set.Subset.trans (vsub_self_mono (le_sup_left : s1 ≤ s1 ⊔ s2)) hp)\n (sInf_le_sInf fun p hp => Set.Subset.trans (vsub_self_mono (le_sup_right : s2 ≤ s1 ⊔ s2)) hp)" } ]
[ 951, 100 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 945, 1 ]
Mathlib/Algebra/Algebra/Subalgebra/Basic.lean
Subalgebra.val_apply
[]
[ 446, 53 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 446, 1 ]
Mathlib/LinearAlgebra/Basis.lean
Basis.coord_equivFun_symm
[]
[ 1009, 56 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1008, 1 ]
Mathlib/SetTheory/Cardinal/Ordinal.lean
Cardinal.mk_multiset_of_isEmpty
[ { "state_after": "no goals", "state_before": "α : Type u\ninst✝ : IsEmpty α\n⊢ (#α →₀ ℕ) = 1", "tactic": "simp" } ]
[ 1081, 57 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1080, 1 ]
Mathlib/MeasureTheory/Measure/Complex.lean
MeasureTheory.SignedMeasure.toComplexMeasure_apply
[]
[ 74, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 73, 1 ]
Mathlib/Geometry/Euclidean/Angle/Unoriented/Basic.lean
InnerProductGeometry.angle_zero_left
[ { "state_after": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y x : V\n⊢ arccos (inner 0 x / (‖0‖ * ‖x‖)) = π / 2", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y x : V\n⊢ angle 0 x = π / 2", "tactic": "unfold angle" }, { "state_after": "no goals", "state_before": "V : Type u_1\ninst✝¹ : NormedAddCommGroup V\ninst✝ : InnerProductSpace ℝ V\nx✝ y x : V\n⊢ arccos (inner 0 x / (‖0‖ * ‖x‖)) = π / 2", "tactic": "rw [inner_zero_left, zero_div, Real.arccos_zero]" } ]
[ 122, 51 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 120, 1 ]
Mathlib/Data/Finset/Basic.lean
Finset.filter_subset
[]
[ 2653, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 2652, 1 ]
Mathlib/GroupTheory/Complement.lean
Subgroup.isComplement'_top_bot
[]
[ 176, 29 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 175, 1 ]
Mathlib/Order/CompleteLattice.lean
inf_eq_iInf
[]
[ 1527, 25 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1526, 1 ]
Mathlib/Data/Finset/Card.lean
Finset.card_range
[]
[ 169, 24 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 168, 1 ]
Mathlib/Algebra/Order/LatticeGroup.lean
LatticeOrderedCommGroup.neg_of_le_one
[]
[ 507, 35 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 506, 1 ]
Mathlib/GroupTheory/Perm/Cycle/Basic.lean
Equiv.Perm.SameCycle.exists_pow_eq
[ { "state_after": "case pos\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y\n\ncase neg\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : ¬x ∈ support f\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y", "state_before": "ι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y", "tactic": "by_cases hx : x ∈ f.support" }, { "state_after": "case pos.intro.intro\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nk : ℕ\nhk : k < card (support (cycleOf f x))\nhk' : ↑(f ^ k) x = y\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y", "state_before": "case pos\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y", "tactic": "obtain ⟨k, hk, hk'⟩ := h.exists_pow_eq_of_mem_support hx" }, { "state_after": "case pos.intro.intro.zero\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.zero) x = y\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y\n\ncase pos.intro.intro.succ\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nk : ℕ\nhk : Nat.succ k < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.succ k) x = y\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y", "state_before": "case pos.intro.intro\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nk : ℕ\nhk : k < card (support (cycleOf f x))\nhk' : ↑(f ^ k) x = y\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y", "tactic": "cases' k with k" }, { "state_after": "case pos.intro.intro.zero.refine'_1\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.zero) x = y\n⊢ 0 < card (support (cycleOf f x))\n\ncase pos.intro.intro.zero.refine'_2\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.zero) x = y\n⊢ ↑(f ^ card (support (cycleOf f x))) x = y", "state_before": "case pos.intro.intro.zero\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.zero) x = y\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y", "tactic": "refine' ⟨(f.cycleOf x).support.card, _, self_le_add_right _ _, _⟩" }, { "state_after": "case pos.intro.intro.zero.refine'_1\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.zero) x = y\n⊢ cycleOf f x ≠ 1", "state_before": "case pos.intro.intro.zero.refine'_1\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.zero) x = y\n⊢ 0 < card (support (cycleOf f x))", "tactic": "refine' zero_lt_one.trans (one_lt_card_support_of_ne_one _)" }, { "state_after": "no goals", "state_before": "case pos.intro.intro.zero.refine'_1\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.zero) x = y\n⊢ cycleOf f x ≠ 1", "tactic": "simpa using hx" }, { "state_after": "case pos.intro.intro.zero.refine'_2\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nhk' : x = y\n⊢ ↑(f ^ card (support (cycleOf f x))) x = y", "state_before": "case pos.intro.intro.zero.refine'_2\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.zero) x = y\n⊢ ↑(f ^ card (support (cycleOf f x))) x = y", "tactic": "simp only [Nat.zero_eq, pow_zero, coe_one, id_eq] at hk'" }, { "state_after": "case pos.intro.intro.zero.refine'_2\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx : α\nf : Perm α\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nh : SameCycle f x x\n⊢ ↑(f ^ card (support (cycleOf f x))) x = x", "state_before": "case pos.intro.intro.zero.refine'_2\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nhk' : x = y\n⊢ ↑(f ^ card (support (cycleOf f x))) x = y", "tactic": "subst hk'" }, { "state_after": "no goals", "state_before": "case pos.intro.intro.zero.refine'_2\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx : α\nf : Perm α\nhx : x ∈ support f\nhk : Nat.zero < card (support (cycleOf f x))\nh : SameCycle f x x\n⊢ ↑(f ^ card (support (cycleOf f x))) x = x", "tactic": "rw [← (isCycle_cycleOf _ <| mem_support.1 hx).orderOf, ← cycleOf_pow_apply_self,\n pow_orderOf_eq_one, one_apply]" }, { "state_after": "no goals", "state_before": "case pos.intro.intro.succ\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nk : ℕ\nhk : Nat.succ k < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.succ k) x = y\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y", "tactic": "exact ⟨k + 1, by simp, Nat.le_succ_of_le hk.le, hk'⟩" }, { "state_after": "no goals", "state_before": "ι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : x ∈ support f\nk : ℕ\nhk : Nat.succ k < card (support (cycleOf f x))\nhk' : ↑(f ^ Nat.succ k) x = y\n⊢ 0 < k + 1", "tactic": "simp" }, { "state_after": "case neg\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : ¬x ∈ support f\n⊢ ↑(f ^ 1) x = y", "state_before": "case neg\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : ¬x ∈ support f\n⊢ ∃ i x_1 x_2, ↑(f ^ i) x = y", "tactic": "refine' ⟨1, zero_lt_one, by simp, _⟩" }, { "state_after": "case neg.intro\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx : α\nf : Perm α\nhx : ¬x ∈ support f\nk : ℤ\n⊢ ↑(f ^ 1) x = ↑(f ^ k) x", "state_before": "case neg\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : ¬x ∈ support f\n⊢ ↑(f ^ 1) x = y", "tactic": "obtain ⟨k, rfl⟩ := h" }, { "state_after": "case neg.intro\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx : α\nf : Perm α\nhx : ↑f x = x\nk : ℤ\n⊢ ↑(f ^ 1) x = ↑(f ^ k) x", "state_before": "case neg.intro\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx : α\nf : Perm α\nhx : ¬x ∈ support f\nk : ℤ\n⊢ ↑(f ^ 1) x = ↑(f ^ k) x", "tactic": "rw [not_mem_support] at hx" }, { "state_after": "no goals", "state_before": "case neg.intro\nι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx : α\nf : Perm α\nhx : ↑f x = x\nk : ℤ\n⊢ ↑(f ^ 1) x = ↑(f ^ k) x", "tactic": "rw [pow_apply_eq_self_of_apply_eq_self hx, zpow_apply_eq_self_of_apply_eq_self hx]" }, { "state_after": "no goals", "state_before": "ι : Type ?u.2618181\nα : Type u_1\nβ : Type ?u.2618187\ninst✝¹ : DecidableEq α\ninst✝ : Fintype α\nf✝ g : Perm α\nx y : α\nf : Perm α\nh : SameCycle f x y\nhx : ¬x ∈ support f\n⊢ 1 ≤ card (support (cycleOf f x)) + 1", "tactic": "simp" } ]
[ 1221, 87 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 1205, 1 ]
Mathlib/Topology/Inseparable.lean
specializes_iff_nhds
[]
[ 102, 10 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 101, 1 ]
Mathlib/Analysis/SpecialFunctions/Trigonometric/Complex.lean
Complex.range_sin
[]
[ 203, 26 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 202, 1 ]
Mathlib/CategoryTheory/Limits/Opposites.lean
CategoryTheory.Limits.PullbackCone.op_inr
[ { "state_after": "no goals", "state_before": "C : Type u₁\ninst✝¹ : Category C\nJ : Type u₂\ninst✝ : Category J\nX✝ : Type v₂\nX Y Z : C\nf : X ⟶ Z\ng : Y ⟶ Z\nc : PullbackCone f g\n⊢ PushoutCocone.inr (op c) = (snd c).op", "tactic": "aesop_cat" } ]
[ 546, 15 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 545, 1 ]
Mathlib/Data/Real/NNReal.lean
NNReal.exists
[]
[ 117, 17 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 115, 11 ]
Mathlib/Logic/Basic.lean
exists_apply_eq_apply'
[]
[ 774, 83 ]
5a919533f110b7d76410134a237ee374f24eaaad
https://github.com/leanprover-community/mathlib4
[ 774, 1 ]