cmcmaster's picture
d0fcc21055b9e03a2a2bf2e8aef0f7450431439cecfe3b89a4946209cf461d0d
c759874 verified
|
raw
history blame
996 Bytes
---
base_model: google/gemma-2-2b
datasets:
- cognitivecomputations/Dolphin-2.9
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- cognitivecomputations/samantha-data
- microsoft/orca-math-word-problems-200k
- mlabonne/FineTome-100k
- arcee/agent_data
- PawanKrd/math-gpt-4o-200k
- cognitivecomputations/SystemChat-2.0
license: gemma
tags:
- generated_from_trainer
- mlx
---
# mlx-community/dolphin-2.9.4-gemma2-2b-4bit
The Model [mlx-community/dolphin-2.9.4-gemma2-2b-4bit](https://huggingface.co/mlx-community/dolphin-2.9.4-gemma2-2b-4bit) was converted to MLX format from [cognitivecomputations/dolphin-2.9.4-gemma2-2b](https://huggingface.co/cognitivecomputations/dolphin-2.9.4-gemma2-2b) using mlx-lm version **0.18.0**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/dolphin-2.9.4-gemma2-2b-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)
```