Edit model card

medical_jargons_simplifierT5

This model is a fine-tuned version of luqh/ClinicalT5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4734

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
3.3369 0.2198 500 0.5700
0.601 0.4396 1000 0.5279
0.572 0.6593 1500 0.5137
0.5556 0.8791 2000 0.5051
0.5132 1.0989 2500 0.4991
0.5406 1.3187 3000 0.4941
0.513 1.5385 3500 0.4909
0.5328 1.7582 4000 0.4880
0.5304 1.9780 4500 0.4846
0.5215 2.1978 5000 0.4825
0.5296 2.4176 5500 0.4811
0.5143 2.6374 6000 0.4799
0.4768 2.8571 6500 0.4780
0.513 3.0769 7000 0.4775
0.4933 3.2967 7500 0.4761
0.4891 3.5165 8000 0.4761
0.5022 3.7363 8500 0.4749
0.523 3.9560 9000 0.4743
0.5233 4.1758 9500 0.4742
0.5004 4.3956 10000 0.4738
0.4817 4.6154 10500 0.4733
0.4848 4.8352 11000 0.4734

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
223M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nadika/medical_jargons_simplifierT5

Finetuned
(4)
this model