nadika's picture
Upload tokenizer
20459d3 verified
|
raw
history blame
2.48 kB
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: google/muril-base-cased
model-index:
- name: nepali_complaints_classification_muril2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nepali_complaints_classification_muril2
This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.641 | 0.22 | 500 | 2.6403 |
| 2.6415 | 0.45 | 1000 | 2.6393 |
| 2.6399 | 0.67 | 1500 | 2.6393 |
| 2.64 | 0.89 | 2000 | 2.6395 |
| 2.6398 | 1.11 | 2500 | 2.6395 |
| 2.64 | 1.34 | 3000 | 2.6392 |
| 2.64 | 1.56 | 3500 | 2.6392 |
| 2.6387 | 1.78 | 4000 | 2.6402 |
| 2.64 | 2.01 | 4500 | 2.6391 |
| 2.6396 | 2.23 | 5000 | 2.6392 |
| 2.6394 | 2.45 | 5500 | 2.6391 |
| 2.64 | 2.67 | 6000 | 2.6392 |
| 2.6398 | 2.9 | 6500 | 2.6391 |
| 2.6395 | 3.12 | 7000 | 2.6391 |
| 2.6392 | 3.34 | 7500 | 2.6391 |
| 2.6384 | 3.57 | 8000 | 2.6394 |
| 2.6392 | 3.79 | 8500 | 2.6391 |
| 2.6392 | 4.01 | 9000 | 2.6391 |
| 2.639 | 4.23 | 9500 | 2.6391 |
| 2.6391 | 4.46 | 10000 | 2.6391 |
| 2.6391 | 4.68 | 10500 | 2.6391 |
| 2.6391 | 4.9 | 11000 | 2.6391 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2