Code-Llama-Bagel-8B / README.md
theprint's picture
Adding Evaluation Results (#1)
7601cf1 verified
|
raw
history blame
4.76 kB
---
license: llama3
tags:
- merge
- mergekit
- lazymergekit
- theprint/Code-Llama-Bagel-8B
- ajibawa-2023/Code-Llama-3-8B
- jondurbin/bagel-8b-v1.0
base_model:
- ajibawa-2023/Code-Llama-3-8B
- jondurbin/bagel-8b-v1.0
model-index:
- name: Code-Llama-Bagel-8B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 25.3
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Code-Llama-Bagel-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 25.34
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Code-Llama-Bagel-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 4.98
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Code-Llama-Bagel-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.47
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Code-Llama-Bagel-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.53
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Code-Llama-Bagel-8B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.24
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=theprint/Code-Llama-Bagel-8B
name: Open LLM Leaderboard
---
# Code-Llama-Bagel-8B
Code-Llama-Bagel-8B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [ajibawa-2023/Code-Llama-3-8B](https://huggingface.co/ajibawa-2023/Code-Llama-3-8B)
* [jondurbin/bagel-8b-v1.0](https://huggingface.co/jondurbin/bagel-8b-v1.0)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: ajibawa-2023/Code-Llama-3-8B
layer_range: [0, 32]
- model: jondurbin/bagel-8b-v1.0
layer_range: [0, 32]
merge_method: slerp
base_model: ajibawa-2023/Code-Llama-3-8B
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "theprint/Code-Llama-Bagel-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_theprint__Code-Llama-Bagel-8B)
| Metric |Value|
|-------------------|----:|
|Avg. |14.48|
|IFEval (0-Shot) |25.30|
|BBH (3-Shot) |25.34|
|MATH Lvl 5 (4-Shot)| 4.98|
|GPQA (0-shot) | 3.47|
|MuSR (0-shot) | 7.53|
|MMLU-PRO (5-shot) |20.24|