text
stringlengths
105
20.6k
label
int64
0
9
label_text
stringclasses
10 values
Haifuki-ho (灰吹法; literally "ash-blowing method"), also known as Lead-silver separation method (Korean: 연은분리법; Hanja: 鉛銀分離法) is a method of silver mining developed in Joseon dynasty of Korea in the 16th century and spread to China and Feudal Japan. The industrial process involved cupellation, and was a contributing factor to the large amount of silver traditionally exported by Japan.
8
Metallurgy
Amidines are much more basic than amides and are among the strongest uncharged/unionized bases. Protonation occurs at the sp-hybridized nitrogen. This occurs because the positive charge can be delocalized onto both nitrogen atoms. The resulting cationic species is known as an amidinium ion and possesses identical C-N bond lengths.
0
Organic Chemistry
Cancer-based research into co-receptors includes the investigation of growth factor activated co-receptors, such as Transforming Growth Factor (TGF-β) co-receptors. Expression of the co-receptor endoglin, which is expressed on the surface of tumor cells, is correlated with cell plasticity and the development of tumors. Another co-receptor of TGF-β is CD8. Although the exact mechanism is still unknown, CD8 co-receptors have been shown to enhance T-cell activation and TGF-β-mediated immune suppression. TGF-β has been shown to influence the plasticity of cells through integrin and focal adhesion kinase. The co-receptors of tumor cells and their interaction with T-cells provide important considerations for tumor immunotherapy. Recent research into co-receptors for p75, such as the sortilin co-receptor, has implicated sortilin in connection to neurotrophins, a type of nerve growth factor. The p75 receptor and co-receptors have been found to influence the aggressiveness of tumors, specifically via the ability of neurotrophins to rescue cells from certain forms of cell death. Sortilin, the p75 co-receptor, has been found in natural killer cells, but with only low levels of neurotrophin receptor. The sortilin co-receptor is believed to work with a neurotrophin homologue that can also cause neurotrophin to alter the immune response.
1
Biochemistry
A modern steel plant employs very few people per tonne, compared to the past. In South Korea, Posco employs 29,648 people to produce 28 million tonnes. During the period 1974 to 1999, the steel industry had drastically reduced employment all around the world. In the US, it was down from 521,000 to 153,000. In Japan, from 459,000 to 208,000; Germany from 232,000 to 78,000; UK from 197,000 to 31,000; Brazil from 118,000 to 59,000; South Africa from 100,000 to 54,000. South Korea already had a low figure. It was only 58,000 in 1999. The steel industry had reduced its employment around the world by more than 1,500,000 in 25 years.
8
Metallurgy
Eukaryotic initiation factors (eIFs) are proteins or protein complexes involved in the initiation phase of eukaryotic translation. These proteins help stabilize the formation of ribosomal preinitiation complexes around the start codon and are an important input for post-transcription gene regulation. Several initiation factors form a complex with the small 40S ribosomal subunit and Met-tRNA called the 43S preinitiation complex (43S PIC). Additional factors of the eIF4F complex (eIF4A, E, and G) recruit the 43S PIC to the five-prime cap structure of the mRNA, from which the 43S particle scans 5-->3 along the mRNA to reach an AUG start codon. Recognition of the start codon by the Met-tRNA promotes gated phosphate and eIF1 release to form the 48S preinitiation complex (48S PIC), followed by large 60S ribosomal subunit recruitment to form the 80S ribosome. There exist many more eukaryotic initiation factors than prokaryotic initiation factors, reflecting the greater biological complexity of eukaryotic translation. There are at least twelve eukaryotic initiation factors, composed of many more polypeptides, and these are described below.
1
Biochemistry
Epothilone D, with the generic drug name utidelone, was approved in China in 2021 for the treatment of metastatic breast cancer. Utidelone has shown benefits in a phase III breast cancer trial when added to capecitabine. One synthetic analog, ixabepilone, was approved in October 2007 by the United States Food and Drug Administration for use in the treatment of aggressive metastatic or locally advanced breast cancer that no longer responds to currently available chemotherapies. In November 2008, the EMEA refused a marketing authorization for ixabepilone. Epothilone B, with the generic drug name patupilone, was proven to contain potent in vivo anticancer activities at tolerated dose levels in several human xenograft models. As a result, patupilone and various analogs underwent various clinical phases. Patupilone and the fully synthetic sagopilone were tested in phase II trials and BMS-310705 was tested in phase I trials). Patupilone failed a phase III trial for ovarian cancer in 2010. Results of a phase III trial with ixabepilone (BMS-247550) in combination with capecitabine in metastatic breast cancer have been announced (2007 – leading to FDA approval).
0
Organic Chemistry
The limiting equivalent conductivity of solutions based on mixed solvents like water alcohol has minima depending on the nature of alcohol. For methanol the minimum is at 15 molar % water, and for the ethanol at 6 molar % water.
7
Physical Chemistry
Flotation is one of the unit processes used to separate the bituminous component of oil sands as part of the process of oil extraction. Some of the bitumen is not recovered in the primary separation vessel and reports to the tailings. These tailings are typically retreated in a scavenging operation to try to recover some of the remaining bitumen. Three industrial-size single downcomer Jameson Cells were sold by Xstrata Technology to Shell Canada in 2007 for a large scale pilot plant project and eight 500 mm downcomers were sold to Syncrude Limited in 2008. In the latter case, the downcomers were used to treat middlings in an existing tertiary oil recovery vessel in a bitumen recovery process patented by Syncrude.
8
Metallurgy
Lab Tests Online (now Testing.com) is a peer-reviewed non-profit web resource about clinical laboratory testing. The site provides information on clinical lab tests as well as conditions that are managed or diagnosed by lab tests. Lab Tests Online also provides summaries of recommendations by age, feature articles on lab-related topics, and news items of patient interest. All contents are reviewed and approved by an Editorial Review Board composed of laboratory professionals before being posted to the site. The site was launched in 2001 by the American Association for Clinical Chemistry, the scientific society for clinical laboratory science and is a collaboration with other professional societies representing the laboratory medicine community. The website is mirrored on other sites in other countries and is available via mobile apps in several countries. In January 2021, AACC’s Lab Tests Online (labtestsonline.org) was acquired by OneCare Media. In November of 2021, LabTestsOnline.org was rebranded to Testing.com.
1
Biochemistry
The nuclear cross section of a nucleus is used to describe the probability that a nuclear reaction will occur. The concept of a nuclear cross section can be quantified physically in terms of "characteristic area" where a larger area means a larger probability of interaction. The standard unit for measuring a nuclear cross section (denoted as σ) is the barn, which is equal to , or . Cross sections can be measured for all possible interaction processes together, in which case they are called total cross sections, or for specific processes, distinguishing elastic scattering and inelastic scattering; of the latter, amongst neutron cross sections the absorption cross sections are of particular interest. In nuclear physics it is conventional to consider the impinging particles as point particles having negligible diameter. Cross sections can be computed for any nuclear process, such as capture scattering, production of neutrons, or nuclear fusion. In many cases, the number of particles emitted or scattered in nuclear processes is not measured directly; one merely measures the attenuation produced in a parallel beam of incident particles by the interposition of a known thickness of a particular material. The cross section obtained in this way is called the total cross section and is usually denoted by a σ or σ. Typical nuclear radii are of the order 10 m. Assuming spherical shape, we therefore expect the cross sections for nuclear reactions to be of the order of or (i.e., 1 barn). Observed cross sections vary enormously: for example, slow neutrons absorbed by the (n, ) reaction show a cross section much higher than 1,000 barns in some cases (boron-10, cadmium-113, and xenon-135), while the cross sections for transmutations by gamma-ray absorption are in the region of 0.001 barn.
7
Physical Chemistry
Instead of using sulfated molecules or the fairly big Buckminster fullerenes recently it became possible to synthesize crystals from the hydrocarbon picene and phenanthrene. Doping the crystal picene and phenanthrene with alkali metals such as potassium or rubidium and annealing for several days leads to superconductivity with transition temperatures up to . For AxPhenanthrene, the superconductivity is possible unconventional. Both phenanthrene and picene are called phenanthrene-edge-type polycyclic aromatic hydrocarbon. The increasing number of benzene rings results in higher T.
0
Organic Chemistry
Different grains and their orientations can be observed using scanning electron microscope (SEM) techniques such as electron backscatter diffraction (EBSD) or polarized optical microscopy (POM). Samples are initially cold- or hot-rolled to introduce a high degree of dislocation density, and then deformed at different strain rates so that dynamic recrystallization occurs. The deformation may be in the form of compression, tension, or torsion. The grains elongate in the direction of applied stress and the misorientation angle of subgrain boundaries increases.
8
Metallurgy
This modeling technique compares the gene sequence of an unknown protein with sequences of proteins with known structures. Depending on the degree of similarity between the sequences, the structure of the known protein can be used as a model for solving the structure of the unknown protein. Highly accurate modeling is considered to require at least 50% amino acid sequence identity between the unknown protein and the solved structure. 30-50% sequence identity gives a model of intermediate-accuracy, and sequence identity below 30% gives low-accuracy models. It has been predicted that at least 16,000 protein structures will need to be determined in order for all structural motifs to be represented at least once and thus allowing the structure of any unknown protein to be solved accurately through modeling. One disadvantage of this method, however, is that structure is more conserved than sequence and thus sequence-based modeling may not be the most accurate way to predict protein structures.
1
Biochemistry
Neurogranin is a calmodulin-binding protein expressed primarily in the brain, particularly in dendritic spines, and participating in the protein kinase C signaling pathway. Neurogranin has recently been found in aortic endothelial cells and cardiomyocytes. Neurogranin is the main postsynaptic protein regulating the availability of calmodulin, binding to it in the absence of calcium. Phosphorylation by protein kinase C lowers its binding ability. NRGN gene expression is controlled by thyroid hormones. Human neurogranin consists of 78 amino acids. One study tells of potential link of neurogranin gene to the heightened risk of schizophrenia in males, another study gives evidence of lowered neurogranin immunoreactivity in the brains of people suffering from schizophrenia. Neurogranin concentration in cerebrospinal fluid (CSF) is further discussed as marker for synaptic dysfunction in age-related neurodegeneration. It has also been shown to be specifically increased in patients with Alzheimers disease. Especially the ratio of CSF neurogranin trunc P75 and the beta-secretase BACE1 is suggested as potential marker for cognitive deterioration in the progress of Alzheimers disease. Prior to its identification in the bovine and rat brain in 1991, neurogranin was known as a putative protein kinase C-phosphorylated protein named p17. Human neurogranin was cloned in 1997 and turned out to be 96% identical to the rat protein.
1
Biochemistry
Flow injection analysis (FIA), was introduced in 1975 by Ruzicka and Hansen, The first generation of FIA technology, termed flow injection (FI), was inspired by the AutoAnalyzer technique invented by Skeggs in early 1950s. While Skeggs' AutoAnalyzer uses air segmentation to separate a flowing stream into numerous discrete segments to establish a long train of individual samples moving through a flow channel, FIA systems separate each sample from subsequent sample with a carrier reagent. While the AutoAnalyzer mixes sample homogeneously with reagents, in all FIA techniques sample and reagents are merged to form a concentration gradient that yields analysis results. FIA methods can be used for both fast reactions as well as slow reactions. For slow reactions, a heater is often utilized. The reaction does not need to reach completion since all samples and standards are given the same period to react. For typical assays commonly measured with FIA (e.g., nitrite, nitrate, ammonia, phosphate) it is not uncommon to have a throughput of 60-120 samples per hour. FIA methods are limited by the amount of time necessary to obtain a measurable signal since travel time through the tubing tends to broaden peaks to the point where samples can merge with each other. As a general rule, FIA methods should not be used if an adequate signal cannot be obtained within two minutes, and preferably less than one. Reactions that need longer reaction times should be segmented. However, considering the number of FIA publications and wide variety of uses of FIA for serial assays, the "one minute" time limitation does not seem to be a serious limitation for most real life assays. Yet, assays based on slow chemical reactions have to be carried either in stopped flow mode ( SIA) or by segmenting the flow. OI Analytical, in its gas diffusion amperometric total cyanide method, uses a segmented flow injection analysis technique that allows reaction times of up to 10 minutes by flow injection analysis. Technicon experimented with FIA long before it was championed by Ruzicka and Hansen. Andres Ferrari reported that analysis was possible without bubbles if flow rates were increased and tubing diameters decreased. In fact, Skegg's first attempts at the auto analyzer did not segment. Technicon chose to not pursue FIA because it increased reagent consumption and the cost of analysis. The second generation of the FIA technique, called sequential injection analysis (SIA), was conceived in 1990 by Ruzicka and Marshal, and has been further developed and miniaturized over the course of the following decade. It uses flow programming instead of the continuous flow regime (as used by CFA and FIA), that allows the flow rate and flow direction to be tailored to the need of individual steps of analytical protocol. Reactants are mixed by flow reversals and a measurement is carried out while the reaction mixture is arrested within the detector by stopping the flow. Microminiaturized chromatography is carried out on microcolumns that are automatically renewed by microfluidic manipulations. The discrete pumping and metering of microliter sample and reagent volumes used in SI only generates waste per each sample injection. The enormous volume of FI and SI literature documents the versatility of FI and SI and their usefulness for routine assays (in soil, water, environmental, biochemical and biotechnological assays) has demonstrated their potential to be used as a versatile research tool.
3
Analytical Chemistry
Numerous compounds adopt this geometry, examples being especially numerous for transition metal complexes. The noble gas compound xenon tetrafluoride adopts this structure as predicted by VSEPR theory. The geometry is prevalent for transition metal complexes with d configuration, which includes Rh(I), Ir(I), Pd(II), Pt(II), and Au(III). Notable examples include the anticancer drugs cisplatin, [PtCl(NH)], and carboplatin. Many homogeneous catalysts are square planar in their resting state, such as Wilkinsons catalyst and Crabtrees catalyst. Other examples include Vaskas complex and Zeises salt. Certain ligands (such as porphyrins) stabilize this geometry.
4
Stereochemistry
Vaporization (from liquid to gas) is divided into two types: vaporization on the surface of the liquid is called evaporation, and vaporization at the boiling point with formation of bubbles in the interior of the liquid is called boiling. However there is no such distinction for the solid-to-gas transition, which is always called sublimation in both corresponding cases.
3
Analytical Chemistry
The study of vitriols (hydrated sulfates of various metals forming glassy minerals from which sulfuric acid can be derived) began in ancient times. Sumerians had a list of types of vitriol that they classified according to the substances color. Some of the earliest discussions on the origin and properties of vitriol is in the works of the Greek physician Dioscorides (first century AD) and the Roman naturalist Pliny the Elder (23–79 AD). Galen also discussed its medical use. Metallurgical uses for vitriolic substances were recorded in the Hellenistic alchemical works of Zosimos of Panopolis, in the treatise Phisica et Mystica', and the Leyden papyrus X.
7
Physical Chemistry
The first sperm banks began as early as 1964 in Iowa, USA and Tokyo, Japan and were established for a medical therapeutic approach to support individuals who were infertile. As a result, over 1 million babies were born within 40 years. Sperm banks provide the opportunity for individuals to have a child who otherwise would not be able to conceive naturally. This includes, but is not limited to, single women, same-sexed couples, and couples where one partner is infertile. Where a sperm bank provides fertility services directly to a recipient woman, it may employ different methods of fertilization using donor sperm in order to optimize the chances of a pregnancy. Sperm banks do not provide a cure for infertility in individuals who produce non-viable sperm. Nevertheless, the increasing range of services available through sperm banks enables people to have choices over challenges with reproduction. Individuals may choose an anonymous donor who will not be a part of family life, or they may choose known donors who may be contacted later in life by the donor children. People may choose to use a surrogate to bear their children, using eggs provided by the person and sperm from a donor. Sperm banks often provide services which enable an individual to have subsequent pregnancies by the same donor, but equally, people may choose to have children by a number of different donors. Sperm banks sometimes enable an individual to choose the sex of their child, enabling even greater control over the way families are planned. Sperm banks increasingly adopt a less formal approach to the provision of their services thereby enabling people to take a relaxed approach to their own individual requirements. Men who donate semen through a sperm bank provide an opportunity for others who cannot have children on their own. Sperm donors may or may not have legal obligations or responsibilities to the child conceived through this route. Whether a donor is anonymous or not, this factor is important in allowing sperm banks to recruit sperm donors and to use their sperm to produce whatever number of pregnancies from each donor as are permitted where they operate, or alternatively, whatever number they decide. In many parts of the world sperm banks are not allowed to be established or to operate. Where sperm banks are allowed to operate they are often controlled by local legislation which is primarily intended to protect the unborn child, but which may also provide a compromise between the conflicting views which surround their operation. A particular example of this is the control which is often placed on the number of children which a single donor may father and which may be designed to protect against consanguinity. However, such legislation usually cannot prevent a sperm bank from supplying donor sperm outside the jurisdiction in which it operates, and neither can it prevent sperm donors from donating elsewhere during their lives. There is an acute shortage of sperm donors in many parts of the world and there is obvious pressure from many quarters for donor sperm from those willing and able to provide it to be made available as safely and as freely as possible.
1
Biochemistry
Grev Brook; Bill Bowyer; David Davies; Mike Dewey; Bill Flavell; Philipp Gross; Eddie Sugars; GI Williams
8
Metallurgy
N-philes are group of radical molecules which are specifically attracted to the C=N bonds, defying often the selectivity rules of electrophilic attack. N-philes can often masquerade as electrophiles, where acyl radicals are excellent examples which interact with pi electrons of aryl groups.
0
Organic Chemistry
Epoxidation with dioxiranes refers to the synthesis of epoxides from alkenes using three-membered cyclic peroxides, also known as dioxiranes. Dioxiranes are three-membered cyclic peroxides containing a weak oxygen-oxygen bond. Although they are able to effect oxidations of heteroatom functionality and even carbon-hydrogen bonds, they are most widely used as epoxidizing agents of alkenes. Dioxiranes are electrophilic oxidants that react more quickly with electron-rich than electron-poor double bonds; however, both classes of substrates can be epoxidized within a reasonable time frame. Dioxiranes may be prepared and isolated or generated in situ from ketones and potassium peroxymonosulfate (Oxone). In situ preparations may be catalytic in ketone, and if the ketone is chiral, enantioselective epoxidation takes place. The functional group compatibility of dioxiranes is limited somewhat, as side oxidations of amines and sulfides are rapid. Nonetheless, protocols for dioxirane oxidations are entirely metal free. The most common dioxiranes employed for synthesis are dimethyl dioxirane (DMD) and methyl(trifluoromethyl)dioxirane (TFD).
0
Organic Chemistry
In 1857 Rudolf Clasius published The Nature of the Motion which We Call Heat. In it he derived the relation for the pressure, , in a gas with particles per unit volume (number density), mass , and mean square speed . He then noted that using the classical laws of Boyle and Charles one could write with a constant of proportionality. Hence temperature was proportional to the average kinetic energy of the particles. This article inspired further work based on the twin ideas that substances are composed of indivisible particles, and that heat is a consequence of the particle motion as governed by Newton's laws. The work, known as the kinetic theory of gases, was done principally by James Clerk Maxwell, and Ludwig Boltzmann. At about the same time J. Willard Gibbs also contributed, and advanced it by converting it into statistical mechanics. This environment influenced Johannes Diderik van der Waals. After initially pursuing a teaching credential, he was accepted for doctoral studies at the University of Leiden under Pieter Rijke. This led, in 1873, to a dissertation that provided a simple, particle based, equation that described the gas–liquid change of state, the origin of a critical temperature, and the concept of corresponding states. The equation is based on two premises, first that fluids are composed of particles with non-zero volumes, and second that at a large enough distance each particle exerts an attractive force on all other particles in its vicinity. These forces were called by Boltzmann van der Waals cohesive forces. In 1869 Irish professor of chemistry Thomas Andrews at Queens University Belfast in a paper entitled On the Continuity of the Gaseous and Liquid States of Matter', displayed an experimentally obtained set of isotherms of carbonic acid, HCO, that showed at low temperatures a jump in density at a certain pressure, while at higher temperatures there was no abrupt change; the figure can be seen here. Andrews called the isotherm at which the jump just disappeared the critical point. Given the similarity of the titles of this paper and van der Waals subsequent thesis one might think that van der Waals set out to develop a theoretical explanation of Andrews experiments. However the opposite is true, van der Waals began work by trying to determine a mollecular attraction that appeared in Laplaces theory of capillarity, and only after establishing his equation tested it using Andrews results. By 1877 sprays of both liquid oxygen and liquid nitrogen had been produced, and a new field of research, low temperature physics, had been opened. The van der Waals equation played a part in all this especially with respect to the liquefaction of hydrogen and helium which was finally achieved in 1908. From measurements of and in two states with the same density, the van der Waals equation produces the values and . Thus from two such measurements of pressure and temperature one could determine and , and from these values calculate the expected critical pressure, temperature, and molar volume. Goodstein summarized this contribution of the van der Waals equation as follows: Van der Waals was awarded the Nobel Prize in 1910, in recognition of the contribution of his formulation of this "equation of state for gases and liquids". As noted previously, modern day studies of first order phase changes make use of the van der Waals equation together with the Gibbs criterion, equal chemical potential of each phase, as a model of the phenomenon. This model has an analytic coexistence (saturation) curve expressed parametrically, , that was first obtained by Plank, known to Gibbs, and later derived in a beautifully simple and elegant manner by Lekner. A summary of Lekner's solution is presented in a subsequent section, and a more complete discussion in the Maxwell construction.
7
Physical Chemistry
Catalytic resonance theory is constructed on the Sabatier principle of catalysis developed by French chemistry Paul Sabatier. In the limit of maximum catalytic performance, the surface of a catalyst is neither too strong nor too weak. Strong binding results in an overall catalytic reaction rate limitation due to product desorption, while weak binding catalysts are limited in the rate of surface chemistry. Optimal catalyst performance is depicted as a volcano peak using a descriptor of the chemical reaction defining different catalytic materials. Experimental evidence of the Sabatier principle was first demonstrated by Balandin in 1960. The concept of catalytic resonance was proposed on dynamic interpretation of the Sabatier volcano reaction plot. As described, extension of either side of the volcano plot above the peak defines the timescales of the two rate-limiting phenomena such as surface reaction(s) or desorption. For binding energy oscillation amplitudes that extend across the volcano peak, the amplitude endpoints intersect the transiently accessible faster timescales of independent reaction phenomena. At the conditions of sufficiently fast binding energy oscillation, the transient binding energy variation frequency matches the natural frequencies of the reaction and the rate of overall reaction achieves turnover frequencies greatly in excess of the volcano plot peak.
7
Physical Chemistry
The LE cell was discovered in bone marrow in 1948 by Hargraves et al. In 1957 Holborow et al. first demonstrated ANA using indirect immunofluorescence. This was the first indication that processes affecting the cell nucleus were responsible for SLE. In 1959 it was discovered that serum from individuals with SLE contained antibodies that precipitated with saline extracts of nuclei, known as extractable nuclear antigens (ENAs). This led to the characterisation of ENA antigens and their respective antibodies. Thus, anti-Sm and anti-RNP antibodies were discovered in 1966 and 1971, respectively. In the 1970s, the anti-Ro/anti-SS-A and anti-La/anti-SS-B antibodies were discovered. The Scl-70 antibody was known to be a specific antibody to scleroderma in 1979, however the antigen (topoisomerase-I) was not characterised until 1986. The Jo-1 antigen and antibody were characterised in 1980.
1
Biochemistry
To make equations of the previous section applicable to the states belonging to the continuum spectrum, they should be rewritten in terms of matrix elements of the momentum . In absence of magnetic field, the Hamiltonian can be written as , and calculating a commutator in the basis of eigenfunctions of results in the relation between matrix elements Next, calculating matrix elements of a commutator in the same basis and eliminating matrix elements of , we arrive at Because , the above expression results in a sum rule where are oscillator strengths for quantum transitions between the states and . This is the Thomas-Reiche-Kuhn sum rule, and the term with has been omitted because in confined systems such as atoms or molecules the diagonal matrix element due to the time inversion symmetry of the Hamiltonian . Excluding this term eliminates divergency because of the vanishing denominator.
7
Physical Chemistry
# The Grunwald–Winstein equation cannot fit all data for different kinds of solvent mixtures. The combinations are limited to certain systems and only to nucleophilic solvents. # For many reactions and nucleophilic solvent systems, the relationships are not fully linear. This derives from the growing S2 reaction character within the mechanism.
7
Physical Chemistry
In August 2018, scientists announced new observations regarding the rapid transformation of fluid deuterium from an insulating to a metallic form below 2000 K. Remarkable agreement is found between the experimental data and the predictions based on quantum Monte Carlo simulations, which is expected to be the most accurate method to date. This may help researchers better understand giant gas planets, such as Jupiter, Saturn and related exoplanets, since such planets are thought to contain a lot of liquid metallic hydrogen, which may be responsible for their observed powerful magnetic fields.
7
Physical Chemistry
On October 4, 2010, the Ajka alumina plant in Hungary had an incident where the western dam of its red mud reservoir collapsed. The reservoir was filled with 700,000 m of a mixture of red mud and water with a pH of 12. The mixture was released into the valley of Torna river and flooded parts of the city of Devecser and the villages of Kolontár and Somlóvásárhely. The incident resulted in 10 deaths, more than a hundred injuries, and contamination in lakes and rivers.
8
Metallurgy
Biomarkers validated by genetic and molecular biology methods can be classified into three types. * Type 0 — Natural history markers * Type 1 — Drug activity markers * Type 2 — Surrogate markers
1
Biochemistry
Cram and Reetz demonstrated that 1,3-stereocontrol is possible if the reaction proceeds through an acyclic transition state. The reaction of β-alkoxy aldehyde with allyltrimethylsilane showed good selectivity for the anti-1,3-diol, which was explained by the Cram polar model. The polar benzyloxy group is oriented anti to the carbonyl to minimize dipole interactions and the nucleophile attacks anti- to the bulkier (R) of the remaining two substituents.
4
Stereochemistry
Silicon in nature is typically bonded to oxygen, in a tetravalent oxidation state. The major forms of solid Si are silicate minerals and amorphous silica, whereas in aqueous solutions the dominant forms are orthosilicic acid and its dissociated species. There are three stable isotopes of Si, associated with the following mean natural abundances: Si– 92.23%, Si– 4.67%, and Si– 3.10%. The isotopic composition of Si is often formulated by the delta notation, as the following: The reference material (standard) for defining the δSi of a sample is the National Bureau of Standards (NBS) 28 Sand Quartz, which has been certified and distributed by the National Institute of Standards and Technology (NIST), and is also named NIST RM 8546. Currently, there are four main analytical methods for the measurement of Si isotopes: Gas Source Isotope-Ratio Mass Spectrometry (GC-IRMS), Secondary Ion Mass Spectrometry (SIMS), Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC–IPC–MS), and Laser Ablation MC–ICP–MS.
9
Geochemistry
Azines are a functional class of organic compounds with the connectivity RRC=N-N=CRR. These compounds are the product of the condensation of hydrazine with ketones and aldehydes, although in practice they are often made by alternative routes. Ketazines are azines derived from ketones. For example, acetone azine is the simplest ketazine. Aldazines are azines derived from aldehydes.
0
Organic Chemistry
Using multi-spectral imaging it is possible to read illegible papyrus, such as the burned papyri of the Villa of the Papyri or of Oxyrhynchus, or the Archimedes palimpsest. The technique involves taking pictures of the illegible document using different filters in the infrared or ultraviolet range, finely tuned to capture certain wavelengths of light. Thus, the optimum spectral portion can be found for distinguishing ink from paper on the papyrus surface. Simple NUV sources can be used to highlight faded iron-based ink on vellum.
5
Photochemistry
The nonradiative process for heat generation of organic PTAs is different from that of inorganic PTAs such as metals and semiconductors which is related with surface plasmon resonance. As shown in the figure, conjugated polymers are first activated to the excited state (S1) under light irradiation and then excited state (S1) decays back to the ground state (S0) via three processes: (I) emitting a photon (fluorescence), (II) intersystem crossing, and (III) nonradiative relaxation (heat generation). Because these three pathways of the S1 decaying back to the S0 are usually competitive in photosensitive materials, light emitting and intersystem crossing must be efficiently reduced in order to increase the heat generation and improve the photothermal conversion efficiency. For conjugated polymers, on the one hand, their unique structures lead to closed stacking of the molecular sensitizers with highly frequent intermolecular collisions which can efficiently quench the fluorescence and intersystem crossing, and thus enhance the yield of nonradiative relaxation. On the other hand, compared with monomeric phototherapeutic molecules, conjugated polymers possess higher stability in vivo against disassembly and photobleaching, longer blood circulation time, and more accumulation at tumor site due to the enhanced permeability and retention (EPR) effect. Therefore, conjugated polymers have high photothermal conversion efficiency and a large amount of heat generation. One of the most widely used equations to calculate photothermal conversion efficiency (η) of organic PTAs is as follows: η = (hAΔΤ-Qs)/I(1-10) where h is the heat transfer coefficient, A is the container surface area, ΔΤ means the maximum temperature change in the solution, A means the light absorbance, I is the laser power density, and Qs is the heat associated with the light absorbance of the solvent. Furthermore, various efficient methods, especially donor-acceptor (D-A) strategy, have been designed to enhance the photothermal conversion efficiency and heat generation of conjugated polymers. The D-A assembly system in the conjugated polymers contributes to strong intermolecular electron transfer from the donor to the acceptor, thus bringing efficient fluorescence and intersystem crossing quenching, and improved heat generation. In addition, the HOMO-LUMO gap of the D−A conjugated polymers can be easily tuned through changing the selection of electron donor (ED) and electron acceptor (EA) moieties, and thus D−A structured polymers with extremely low band gap can be developed to improve the NIR absorption and photothermal conversion efficiency of CPs.
5
Photochemistry
Moroidin has shown to have anti-mitotic properties, chiefly by inhibiting the polymerization of tubulin. Tubulin protein polymers are the major component of microtubules. During mitosis, microtubules form the organizing structure called the mitotic apparatus, which captures, aligns, and separates chromosomes. The proper alignment and separation of chromosomes is critical to ensure that cells divide their genetic material equally between daughter cells. Failure to attach chromosomes to the mitotic apparatus activates the mitotic checkpoint, preventing cells from entering anaphase to proceed with cell division. Agents that disrupt microtubules therefore inhibit mitosis through activation of this checkpoint. Moroidin and its related compounds, the celogentins, inhibit tubulin polymerization. Of this family, celogentin C is the most potent (IC 0.8×10 M), and it is more potent than the anti-mitotic agent vinblastine (IC 3.0×10). Moroidin has the same potency as vinblastine. Because of this biological activity, compounds in this family have potential as anti-cancer agents. The mechanism of tubulin disruption is not known, but the degree of biological activity has been linked to the structure of the right-hand ring containing the Trp-His linkage. Moroidin and the celogentins can be divided into three groups according to structural similarity of the right-hand ring. Celogentin C, the most potent compound, has a unique right-hand ring containing a proline residue. Moroidin and its analogous celogentins all have activity comparable to that of vinblastine, and a third group of celogentins all have reduced activity. In contrast, stephanotic acid, a cyclic compound analogous only to the left-hand ring and containing the same Leu-His linkage, has no anti-mitotic activity. Other anti-tubulin agents used as chemotherapy agents have painful side effects known as neuropathy when the drugs are exposed to tissue. Although the exact mechanism for the cause of neuropathy is unknown, it is thought to be related to the degradation of microtubules, which are essential components of neurons.
0
Organic Chemistry
Supercritical fluid chromatography (SFC) is a form of normal phase chromatography that uses a supercritical fluid such as carbon dioxide as the mobile phase. It is used for the analysis and purification of low to moderate molecular weight, thermally labile molecules and can also be used for the separation of chiral compounds. Principles are similar to those of high performance liquid chromatography (HPLC); however, SFC typically utilizes carbon dioxide as the mobile phase. Therefore, the entire chromatographic flow path must be pressurized. Because the supercritical phase represents a state whereby bulk liquid and gas properties converge, supercritical fluid chromatography is sometimes called convergence chromatography. The idea of liquid and gas properties convergence was first envisioned by Giddings.
3
Analytical Chemistry
The Kirkendall effect was discovered by Ernest Kirkendall and Alice Smigelskas in 1947, in the course of Kirkendalls ongoing research into diffusion in brass. The paper in which he discovered the famous effect was the third in his series of papers on brass diffusion, the first being his thesis. His second paper revealed that zinc diffused more quickly than copper in alpha-brass, which led to the research producing his revolutionary theory. Until this point, substitutional and ring methods were the dominant ideas for diffusional motion. Kirkendalls experiment produced evidence of a vacancy diffusion mechanism, which is the accepted mechanism to this day. At the time it was submitted, the paper and Kirkendalls ideas were rejected from publication by Robert Franklin Mehl, director of the Metals Research Laboratory at Carnegie Institute of Technology (now Carnegie Mellon University). Mehl refused to accept Kirkendalls evidence of this new diffusion mechanism, and denied publication for over six months, only relenting after a conference was held and several other researchers confirmed Kirkendall's results.
8
Metallurgy
Diffuse clouds are of astronomical interest because they play a primary role in the evolution and thermodynamics of ISM. Observation of the abundant atomic hydrogen in 21 cm has shown good signal-to-noise ratio in both emission and absorption. Nevertheless, HI observations have a fundamental difficulty when are directed to low mass regions of the hydrogen nucleus, as the center part of a diffuse cloud: Thermal width of hydrogen lines are the same order as the internal velocities structures of interest, so clouds components of various temperatures and central velocities are indistinguishable in the spectrum. Molecular lines observations in principle doesnt suffer from these problems. Unlike HI, molecules generally have excitation temperature T , so that emission is very weak even from abundant species. CO and HO are considered to be the most easily studied candidate molecules. CO has transitions in a region of the spectrum (wavelength HO has the 18 cm emission, line convenient for absorption observations. Observation studies provide the most sensitive means of detections of molecules with sub thermal excitation, and can give the opacity of the spectral line, which is a central issue to model the molecular region. Studies based in the kinematic comparison of HO and HI absorption lines from diffuse clouds are useful in determining their physical conditions, especially because heavier elements provide higher velocity resolution.
2
Environmental Chemistry
15-Crown-5 can be synthesized using a modified Williamson ether synthesis: :(CHOCHCHCl) + O(CHCHOH) + 2 NaOH → (CHCHO) + 2 NaCl + 2 HO It also forms from the cyclic oligomerization of ethylene oxide in the presence of gaseous boron trifluoride.
6
Supramolecular Chemistry
There are a number of ASTM analytical test methods to determine amine value. A number of states in the United States have adopted their own test methods but they are based on ASTM methods. Although there are similarities with the method it is not the same as an acid value. * ASTM D2073 - This is a potentiometric method. * ASTM D2074-07 * ASTM D2896 - potentiometric method with perchloric acid. * ASTM D6979-03
3
Analytical Chemistry
Mating in yeast is stimulated by the presence of a pheromone which binds to either the Ste2 receptor (in a-cells) or the Ste3 receptor (in α-cells). The binding of this pheromone then leads to the activation of a heterotrimeric G protein. The dimeric portion of this G-protein recruits Ste5 (and its related MAPK cascade components) to the membrane, and ultimately results in the phosphorylation of Fus3. The switching mechanism arises as a result of competition between the Fus3 protein (a MAPK protein) and the phosphatase Ptc1. These proteins both attempt to control the 4 phosphorylation sites of Ste5, a scaffold protein with Fus3 attempting to phosphorylate the phosphosites, and Ptc1 attempting to dephosphorylate them. Presence of α-factor induces recruitment of Ptc1 to Ste5 via a 4 amino acid motif located within the Ste5 phosphosites. Ptc1 then dephosphorylates Ste5, ultimately resulting in the dissociation of the Fus3-Ste5 complex. Fus3 dissociates in a switch-like manner, dependent on the phosphorylation state of the 4 phosphosites. All 4 phosphosites must be dephosphorylated in order for Fus3 to dissociate. Fus3's ability to compete with Ptc1 decreases as Ptc1 is recruited, and thus the rate of dephosphorylation increases with the presence of pheromone. Kss1, a homologue of Fus3, does not affect shmooing, and does not contribute to the switch-like mating decision. In yeast, mating as well as the production of shmoos occur via an all-or-none, switch-like mechanism. This switch-like mechanism allows yeast cells to avoid making an unwise commitment to a highly demanding procedure. However, not only does the mating decision need to be conservative (in order to avoid wasting energy), but it must also be fast to avoid losing the potential mate. The decision to mate is extremely sensitive. There are 3 ways in which this ultrasensitivity is maintained: #Multi-site phosphorylation – Fus3 only dissociates from Ste5 and becomes fully active when all 4 of the phosphosites are dephosphorylated. Even one phosphorylated site will result in immunity to α-factor. #Two-stage binding – Fus3 and Ptc1 bind to separate docking sites on Ste5. Only after docking can they bind to, and act on, the phosphosites. #Steric hindrance – competition between Fus3 and Ptc1 to control the 4 phosphosites on Ste3 [a and α yeast share the same mating response pathway, with the only difference being the type of receptor each mating type possesses. Thus the above description, given for a-type yeast stimulated with α-factor, works equally well for α-type yeast stimulated with a-factor.]
1
Biochemistry
The DNA methylation level estimations can be confounded by varying densities of methylated CpG sites across the genome when observing data generated by MeDIP. This can be problematic for analyzing CpG-poor (lower density) regions. One reason for this density issue is its effect on the efficiency of immunoprecipitation. In their study, Down et al. developed a tool to estimate absolute methylation levels from data generated by MeDIP by modeling the density of methylated CpG sites. This tool is called Bayesian tool for methylation analysis (Batman). The study reports the coverage of ~90% of all CpG sites in promoters, gene-coding regions, islands, and regulatory elements where methylation levels can be estimated; this is almost 20 times better coverage than any previous methods. Studies using MeDIP-seq or MeDIP-chip are both genome-wide approaches that have the common aim of obtaining the functional mapping of the methylome. Once regions of DNA methylation are identified, a number of bioinformatics analyses can be applied to answer certain biological questions. One obvious step is to investigate genes contained in these regions and investigate the functional significance of their repression. For example, silencing of tumour-suppressor genes in cancer can be attributed to DNA methylation. By identifying mutational events leading to hypermethylation and subsequent repression of known tumour-suppressor genes, one can more specifically characterize the contributing factors to the cause of the disease. Alternatively, one can identify genes that are known to be normally methylated but, as a result of some mutation event, is no longer silenced. Also, one can try and investigate and identify whether some epigenetic regulator has been affected such as DNA methyltransferase (DNMT); in these cases, enrichment may be more limited. Gene-set analysis (for example using tools like DAVID and GoSeq) has been shown to be severely biased when applied to high-throughput methylation data (e.g. MeDIP-seq and MeDIP-ChIP); it has been suggested that this can be corrected using sample label permutations or using a statistical model to control for differences in the numberes of CpG probes / CpG sites that target each gene.
1
Biochemistry
Adhesion is an essential process to epithelial cells so that epithelium can be formed and cells can be in permanent contact with extracellular matrix and other cells. Several pathways exist to accomplish this communication and adhesion with environment. But the main signalling pathways are the cadherin and integrin pathways. The cadherin pathway is present in adhesion junctions or in desmosomes and it is responsible for epithelial adhesion and communication with adjacent cells. Cadherin is a transmembrane glycoprotein receptor that establishes contact with another cadherin present in the surface of a neighbour cell forming an adhesion complex. This adhesion complex is formed by β-catenin and α-catenin, and p120 is essential for its stabilization and regulation. This complex then binds to actin, leading to polymerization. For actin polymerization through the cadherin pathway, proteins of the Rho GTPases family are also involved. This complex is regulated by phosphorylation, which leads to downregulation of adhesion. Several factors can induce the phosphorylation, like EGF, HGF or v-Src. The cadherin pathway also has an important function in survival and proliferation because it regulates the concentration of cytoplasmic β-catenin. When β-catenin is free in the cytoplasm, normally it is degraded, however if the Wnt signalling is activated, β-catenin degradation is inhibited and it is translocated to the nucleus where it forms a complex with transcription factors. This leads to activation of genes responsible for cell proliferation and survival. So the cadherin-catenin complex is essential for cell fate regulation. Integrins are heterodimeric glycoprotein receptors that recognize proteins present in the extracellular matrix, like fibronectin and laminin. In order to function, integrins have to form complexes with ILK and Fak proteins. For adhesion to the extracellular matrix, ILK activate the Rac and Cdc42 proteins and leading to actin polymerization. ERK also leads to actin polymerization through activation of cPLA2. Recruitment of FAK by integrin leads to Akt activation and this inhibits pro-apoptotic factors like BAD and Bax. When adhesion through integrins do not occur the pro-apoptotic factors are not inhibited and resulting in apoptosis.
7
Physical Chemistry
Photo-oxidation is the combined action of UV-light and oxygen and is the most significant factor in the weathering of plastics. Although many polymers do not absorb UV-light, they often contain impurities like hydroperoxide and carbonyl groups introduced during thermal processing, which do. These act as photoinitiators to give complex free radical chain reactions where the mechanisms of autoxidation and photodegradation combine. Photo-oxidation can be held back by light stabilizers such as hindered amine light stabilizers (HALS).
7
Physical Chemistry
Pseudouridine (Ψ, 5-ribosyluracil) is the most abundant RNA modification; in fact, at one time it was considered the "fifth nucleotide". This isomer of uridine is found in various types of RNA, such as snRNA, tRNA, small nucleolar RNA (snoRNA) and many others. Pseudouridine increases the stability of the modified RNA by making the sugar-phosphate backbone more rigid and by facilitating base stacking interactions (pseudouridine contains an extra hydrogen bond donor). When it comes to Watson-Crick base pair interactions, the pseudouridine-adenosine base pair is more stable than the uridine-adenosine base pair; therefore, pseudouridine increases stability. Apart from increasing RNA stability, this modification is also involved in regulation of translation. All eukaryotic stop codons contain one uridine (UAA, UGA and UGA); conversion of this uridine to pseudouridine results in suppression of translational termination and generation of unexpected sense codons. The artificial process of pseudouridylation has an effect on the function of mRNA: it changes the genetic code by making non-canonical base pairing possible in the ribosome decoding center. Pseudouridylation reactions are catalyzed by enzymes that contain the pseudouridine synthase domain; 13 such enzymes have been identified in humans, which are called pseudouridine syntheses (PUS). These enzymes can be either RNA-dependent or RNA-independent depending on whether a small RNA is needed to guide the enzyme to its target or not. Additionally, different PUS enzymes work in different cell compartments. For instance, PUS4 (also known as TruB pseudouridine synthase family member 1, TRUB1) and PUS7, which are responsible for most of the mRNA pseudouridylation, are located in the nucleus or the cytoplasm. On the other hand, several PUS enzymes, such as PUS1 and TRUB2 are located in the mitochondria, modifying a number of mitochondrial mRNAs (mt-mRNAs). In tRNA, PUS1 and PUS7 modify the second uridine in the UGUAR consensus sequence, as long as this sequence is located in a very structured region of the tRNA. To date, no pseudouridine erasers or readers have been identified. It is thought that pseudouridylation is most probably an irreversible process. Pseudouridine is most commonly found in tRNAs, with almost all tRNA molecules having at least one pseudouridine. Therefore, because the addition of pseudouridine happens during the normal processing of tRNA, it is not considered an epitranscriptomic mark. However, pseudouridine acts as an epigenetic mark in mRNAs and ncRNAs of the brain, since pseudouridylation in these two RNAs responds dynamically to stress and differentiation in the cell, giving reason to believe that pseudouridylation may act as an important regulatory mechanism for RNA function. Pseudouridylation in mRNA can be conserved, tissue-specific or inducible, which reflects plasticity and regulatory function. Furthermore, expression of TRBU1, which is mostly expressed in the brain, goes up due to fear conditioning. In addition, expression of the ncRNAs needed to guide RNA-dependent PUS enzymes also goes up in response to fear.
1
Biochemistry
In the 17th century, copper miners in Saxony, Germany, began to experience irritation caused by a "dark red ore". Since the substance, which would later be called nickel, led to many ailments, they believed it to be protected by "goblins", and called it "Goblin's Copper". Josef Jadassohn described the first case of metal contact dermatitis in 1895, to a mercury-based therapeutic cream, and confirmed the cause by epi-cutaneous patch testing. In the next century nickel began to be mass-produced for jewelry worldwide due to its cheap cost, resistance to corrosion and high supply. In 1979 a large comprehensive study of healthy US volunteers found that 9% had been unknowingly sensitized to nickel. , that number has tripled. Most importantly, nickel allergy among children is increasing, with an estimated 250,000 children sensitized to nickel. Published literature shows an exponential increase in reported nickel allergy cases. The North American Contact Dermatitis Group (NACDG) patch tested 5,085 adults, presenting with eczema-like symptoms, showing 19.5% had a positive reaction to nickel. Nickel allergy is also more prevalent in women (17.1%) than men (3%), possibly due to cultural norms related to jewelry and ear piercings and therefore increased exposure to nickel. In order to investigate the current prevalence of nickel, Loma Linda University, Nickel Allergy Alliance, and Dermatitis Academy, are conducting a self-reporting nickel allergy-dermatitis survey.
1
Biochemistry
Raymond Urgel Lemieux, CC, AOE, FRS (June 16, 1920 – July 22, 2000) was a Canadian organic chemist, who pioneered many discoveries in the field of chemistry, his first and most famous being the synthesis of sucrose. His contributions include the discovery of the anomeric effect and the development of general methodologies for the synthesis of saccharides still employed in the area of carbohydrate chemistry. He was a fellow of the Royal Society of Canada and the Royal Society (England), and a recipient of the prestigious Albert Einstein World Award of Science and Wolf Prize in Chemistry.
0
Organic Chemistry
The electrons are often fired at gold foil because gold has a high atomic number (Z), is non-reactive (does not form an oxide layer), and can be easily made into a thin film (reducing multiple scattering). The presence of a spin-orbit term in the scattering potential introduces a spin dependence in the scattering cross section. Two detectors at exactly the same scattering angle to the left and right of the foil count the number of scattered electrons. The asymmetry A, given by: is proportional to the degree of spin polarization P according to A = SP, where S is the Sherman function. The Mott cross section formula is the mathematical description of the scattering of a high energy electron beam from an atomic nucleus-sized positively charged point in space. The Mott scattering is the theoretical diffraction pattern produced by such a mathematical model. It is used as the beginning point in calculations in electron scattering diffraction studies. The equation for the Mott cross section includes an inelastic scattering term to take into account the recoil of the target proton or nucleus. It also can be corrected for relativistic effects of high energy electrons, and for their magnetic moment. When an experimentally found diffraction pattern deviates from the mathematically derived Mott scattering, it gives clues as to the size and shape of an atomic nucleus The reason is that the Mott cross section assumes only point-particle Coulombic and magnetic interactions between the incoming electrons and the target. When the target is a charged sphere rather than a point, additions to the Mott cross section equation (form factor terms) can be used to probe the distribution of the charge inside the sphere. The Born approximation of the diffraction of a beam of electrons by atomic nuclei is an extension of Mott scattering.
7
Physical Chemistry
Many properties of materials are affected by their crystal structure. This structure can be investigated using a range of crystallographic techniques, including X-ray crystallography, neutron diffraction and electron diffraction. The sizes of the individual crystals in a crystalline solid material vary depending on the material involved and the conditions when it was formed. Most crystalline materials encountered in everyday life are polycrystalline, with the individual crystals being microscopic in scale, but macroscopic single crystals can be produced either naturally (e.g. diamonds) or artificially. Real crystals feature defects or irregularities in the ideal arrangements, and it is these defects that critically determine many of the electrical and mechanical properties of real materials.
8
Metallurgy
The following content uses protein primary structure single-letter location. A "[n]" prefix indicates the N-terminus and a "[c]" suffix indicates the C-terminus; sequences lacking either are found in the middle of the protein.
1
Biochemistry
As hyrax middens have been developed as palaeoenvironmental archives, there has been increasing emphasis on the application of stable isotope analyses to midden sequences. Initially this focussed on the use of bulk C data, with an emphasis on identifying changes in the relative abundance of C/C/CAM vegetation and associated palaeoecological/palaeoenvironmental inferences. This is useful in climatic transition zones, such as the Western Cape Province of South Africa, where modern rainfall seasonality has a strong impact on C/C grass distributions. δC records can also be used in some ecoregions, such as the dry savannah at Spitzkoppe in Namibia, as an indicator of the reliability of grass cover. As hyraxes will preferentially graze (grasses are C in the region), more depleted δC values from hyrax middens have been interpreted as evidence that the animals were forced to obtain a greater proportion of their diet from trees and shrubs, which are less susceptible to extended periods of drought. However, these data do not necessarily provide a direct and unambiguous indicator of past arid/humid shifts. As such, other studies have focussed on the use of δN data as a potential proxy for water availability in the environment
9
Geochemistry
Ligands containing atomic chirality centers such asymmetric carbon, which usually do not have C-symmetry, remain important in catalysis. Examples include cinchona alkaloids and certain phosphoramidites. P-chiral monophosphines have also been investigated.
4
Stereochemistry
Triple-decker complexes are known to obey a 30-valence electron (VE) rule. Subtracting 6 pairs of nonbonding electrons from the two metal atoms brings the number of SEPs to 9 pairs. For a triple-decker complex with cyclopentadienyl| as the decks, m + n + o + p − q = 3 + 17 + 2 + 2 − 0 = 24. Subtracting the 15 pairs corresponding to C–C sigma bonds, it becomes 9 pairs. For example, consider : 15 C–CH groups provide pairs. Each ruthenium atom provides one pair. Removing the electron corresponding to the positive charge of the complex leads to a total of + 2 − = 24 pairs.
7
Physical Chemistry
Niobium-germanium (NbGe) is an intermetallic chemical compound of niobium (Nb) and germanium (Ge). It has A15 phase structure. It is a superconductor with a critical temperature of 23.2 K. Sputtered films have been reported to have an upper critical field of 37 teslas at 4.2 K.
8
Metallurgy
During the 19th century, the demand for nitrates and ammonia for use as fertilizers and industrial feedstocks rapidly increased. The main source was mining niter deposits and guano from tropical islands. At the beginning of the 20th century these reserves were thought insufficient to satisfy future demands, and research into new potential sources of ammonia increased. Although atmospheric nitrogen (N) is abundant, comprising ~78% of the air, it is exceptionally stable and does not readily react with other chemicals. Haber, with his assistant Robert Le Rossignol, developed the high-pressure devices and catalysts needed to demonstrate the Haber process at a laboratory scale. They demonstrated their process in the summer of 1909 by producing ammonia from the air, drop by drop, at the rate of about per hour. The process was purchased by the German chemical company BASF, which assigned Carl Bosch the task of scaling up Haber's tabletop machine to industrial scale. He succeeded in 1910. Haber and Bosch were later awarded Nobel Prizes, in 1918 and 1931 respectively, for their work in overcoming the chemical and engineering problems of large-scale, continuous-flow, high-pressure technology. Ammonia was first manufactured using the Haber process on an industrial scale in 1913 in BASF's Oppau plant in Germany, reaching 20 tonnes/day in 1914. During World War I, the production of munitions required large amounts of nitrate. The Allies had access to large deposits of sodium nitrate in Chile (Chile saltpetre) controlled by British companies. India had large supplies too, but it was also controlled by the British. Germany had no such resources, so the Haber process proved essential to the German war effort. Synthetic ammonia from the Haber process was used for the production of nitric acid, a precursor to the nitrates used in explosives. The original Haber–Bosch reaction chambers used osmium as the catalyst, but it was available in extremely small quantities. Haber noted uranium was almost as effective and easier to obtain than osmium. In 1909, BASF researcher Alwin Mittasch discovered a much less expensive iron-based catalyst that is still used. A major contributor to the elucidation of this catalysis was Gerhard Ertl. The most popular catalysts are based on iron promoted with KO, CaO, SiO, and AlO. During the interwar years, alternative processes were developed, most notably the Casale process, Claude process, and the Mont-Cenis process developed by Friedrich Uhde Ingenieurbüro. Luigi Casale and Georges Claude proposed to increase the pressure of the synthesis loop to , thereby increasing the single-pass ammonia conversion and making nearly complete liquefaction at ambient temperature feasible. Claude proposed to have three or four converters with liquefaction steps in series, thereby avoiding recycling. Most plants continue to use the original Haber process ( and ), albeit with improved single-pass conversion and lower energy consumption due to process and catalyst optimization.
7
Physical Chemistry
A microbatch usually involves immersing a very small volume of protein droplets in oil (as little as 1 µl). The reason that oil is required is because such low volume of protein solution is used and therefore evaporation must be inhibited to carry out the experiment aqueously. Although there are various oils that can be used, the two most common sealing agent are paraffin oils (described by Chayen et al.) and silicon oils (described by D’Arcy). There are also other methods for microbatching that don't use a liquid sealing agent and instead require a scientist to quickly place a film or some tape on a welled plate after placing the drop in the well. Besides the very limited amounts of sample needed, this method also has as a further advantage that the samples are protected from airborne contamination, as they are never exposed to the air during the experiment.
3
Analytical Chemistry
The worlds largest scale implementation of Fischer–Tropsch technology is a series of plants operated by Sasol in South Africa, a country with large coal reserves, but little oil. With a capacity of 165000 Bpd at its Secunda plant. The first commercial plant opened in 1952. Sasol uses coal and natural gas as feedstocks and produces a variety of synthetic petroleum products, including most of the countrys diesel fuel.
0
Organic Chemistry
When in 1981 Rob Aalberse from the University of Amsterdam noticed the enormous cross-reactivity of some patients´ sera against virtually any plant and even insects, notably, insect venoms, it took ten years to arrive at a possible structural explanation of this phenomenon. 1991, Japanese researchers determined the structure of the epitope common to horseradish peroxidase and Drosophila neurons as being an asparagine-linked oligosaccharide (N-glycan) containing a xylose and a core-linked α1,3-linked fucose residue. These structural features are not present in humans and animals. Core α1,3-fucose was then found to be relevant for the binding of patients´ IgE to honeybee venom allergens, which contain N-glycans with structural similarities to plant N-glycans. Ever since then, core α1,3-fucose emerged as the structural element most relevant as a CCD in plants and insect allergens. Much later, both xylose and core α1,3-fucose were revealed as heart pieces of two independent glycan epitopes for rabbit IgG. The occurrence of human anti-xylose IgE, however, has not been verified so far. Still, because of the two possible epitopes and the different carrier structures, the plural CCDs is in frequent use even though core α1,3-fucose appears to be the single culprit.
0
Organic Chemistry
Induced-charge electrokinetics in physics is the electrically driven fluid flow and particle motion in a liquid electrolyte. Consider a metal particle (which is neutrally charged but electrically conducting) in contact with an aqueous solution in a chamber/channel. If different voltages apply to the end of this chamber/channel, electric field will generate in this chamber/channel. This applied electric field passes through this metal particle and causes the free charges inside the particle migrate under the skin of particle. As a result of this migration, the negative charges move to the side which is close to the positive (or higher) voltage while the positive charges move to the opposite side of the particle. These charges under the skin of the conducting particle attract the counter-ions of the aqueous solution; thus, the electric double layer (EDL) forms around the particle. The EDL sign on the surface of the conducting particle changes from positive to negative and the distribution of the charges varies along the particle geometry. Due to these variations, the EDL is non-uniform and has different signs. Thus, the induced zeta potential around the particle, and consequently slip velocity on the surface of the particle, vary as a function of the local electric field. Differences in magnitude and direction of slip velocity on the surface of the conducting particle effects the flow pattern around this particle and causes micro vortices. Yasaman Daghighi and Dongqing Li, for the first time, experimentally illustrated these induced vortices around a 1.2mm diameter carbon-steel sphere under the 40V/cm direct current (DC) external electric filed. Chenhui Peng et al. also experimentally showed the patterns of electro-osmotic flow around an Au sphere when alternating current (AC) is involved (E=10mV/μm, f=1 kHz). Electrokinetics here refers to a branch of science related to the motion and reaction of charged particles to the applied electric filed and its effects on its environment. It is sometimes referred as non-linear electrokinetic phenomena as well.
7
Physical Chemistry
Pd(PPh) is widely used as a catalyst for palladium-catalyzed coupling reactions. Prominent applications include the Heck reaction, Suzuki coupling, Stille coupling, Sonogashira coupling, and Negishi coupling. These processes begin with two successive ligand dissociations followed by the oxidative addition of an aryl halide to the Pd(0) center: :Pd(PPh) + ArBr → PdBr(Ar)(PPh) + 2 PPh
0
Organic Chemistry
The plasmalysis of wastewater and liquid manure enables hydrogen to be recovered from pollutants contained in the wastewater (ammonium (NH4) or hydrocarbon compounds (COD)). The plasma-catalytic decomposition of ammonia takes place as shown in the following reaction equation: The treated wastewater is purified in the process. The energy requirement for the production of green hydrogen is approx. 12 kWh/kg. This technology can also be used as ammonia cracking (chemistry) technology for splitting the hydrogen carrier ammonia.
7
Physical Chemistry
The bond length between two atoms in a molecule depends not only on the atoms but also on such factors as the orbital hybridization and the electronic and steric nature of the substituents. The carbon–carbon (C–C) bond length in diamond is 154 pm. It is generally considered the average length for a carbon–carbon single bond, but is also the largest bond length that exists for ordinary carbon covalent bonds. Since one atomic unit of length (i.e., a Bohr radius) is 52.9177 pm, the C–C bond length is 2.91 atomic units, or approximately three Bohr radii long. Unusually long bond lengths do exist. Current record holder for the longest C-C bond with a length of 186.2 pm is 1,8-Bis(5-hydroxydibenzo[a,d]cycloheptatrien-5-yl)naphthalene, one of many molecules within a category of hexaaryl ethanes, which are derivatives based on hexaphenylethane skeleton. Bond is located between carbons C1 and C2 as depicted in a picture below. Another notable compound with an extraordinary C-C bond length is tricyclobutabenzene, in which a bond length of 160 pm is reported. Longest C-C bond within the cyclobutabenzene category is 174 pm based on X-ray crystallography. In this type of compound the cyclobutane ring would force 90° angles on the carbon atoms connected to the benzene ring where they ordinarily have angles of 120°. The existence of a very long C–C bond length of up to 290 pm is claimed in a dimer of two tetracyanoethylene dianions, although this concerns a 2-electron-4-center bond. This type of bonding has also been observed in neutral phenalenyl dimers. The bond lengths of these so-called "pancake bonds" are up to 305 pm. Shorter than average C–C bond distances are also possible: alkenes and alkynes have bond lengths of respectively 133 and 120 pm due to increased s-character of the sigma bond. In benzene all bonds have the same length: 139 pm. Carbon–carbon single bonds increased s-character is also notable in the central bond of diacetylene (137 pm) and that of a certain tetrahedrane dimer (144 pm). In propionitrile the cyano group withdraws electrons, also resulting in a reduced bond length (144 pm). Squeezing a C–C bond is also possible by application of strain. An unusual organic compound exists called In-methylcyclophane with a very short bond distance of 147 pm for the methyl group being squeezed between a triptycene and a phenyl group. In an in silico experiment a bond distance of 136 pm was estimated for neopentane locked up in fullerene. The smallest theoretical C–C single bond obtained in this study is 131 pm for a hypothetical tetrahedrane derivative. The same study also estimated that stretching or squeezing the C–C bond in an ethane molecule by 5 pm required 2.8 or 3.5 kJ/mol, respectively. Stretching or squeezing the same bond by 15 pm required an estimated 21.9 or 37.7 kJ/mol.
4
Stereochemistry
Phenolphthalein ( ) is a chemical compound with the formula CHO and is often written as "HIn", "HPh", "phph" or simply "Ph" in shorthand notation. Phenolphthalein is often used as an indicator in acid–base titrations. For this application, it turns colorless in acidic solutions and pink in basic solutions. It belongs to the class of dyes known as phthalein dyes. Phenolphthalein is slightly soluble in water and usually is dissolved in alcohols in experiments. It is a weak acid, which can lose H ions in solution. The nonionized phenolphthalein molecule is colorless and the double deprotonated phenolphthalein ion is fuchsia. Further proton loss in higher pH occurs slowly and leads to a colorless form. Phenolphthalein ion in concentrated sulfuric acid is orange red due to sulfonation.
3
Analytical Chemistry
Usually the time-of-flight tube used in mass spectrometry is praised for simplicity, but for precision measurements of charged low energy particles the electric and the magnetic field in the tube has to be controlled within 10 mV and 1 nT respectively. The work function homogeneity of the tube can be controlled by a Kelvin probe. The magnetic field can be measured by a fluxgate compass. High frequencies are passively shielded and damped by radar absorbent material. To generate arbitrary low frequencies field the screen is parted into plates (overlapping and connected by capacitors) with bias voltage on each plate and a bias current on coil behind plate whose flux is closed by an outer core. In this way the tube can be configured to act as a weak achromatic quadrupole lens with an aperture with a grid and a delay line detector in the diffraction plane to do angle resolved measurements. Changing the field the angle of the field of view can be changed and a deflecting bias can be superimposed to scan through all angles. When no delay line detector is used focusing the ions onto a detector can be accomplished through the use of two or three einzel lenses placed in the vacuum tube located between the ion source and the detector. The sample should be immersed into the tube with holes and apertures for and against stray light to do magnetic experiments and to control the electrons from their start.
7
Physical Chemistry
Several groups have applied atomic manipulation techniques for artistic purposes to demonstrate control over the adatom positions. These include various institutional logos and a movie called “A Boy and His Atom” composed of individual STM scans by IBM researchers. Several notable condensed matter physics experiments have been realized with atomic manipulation techniques. These include the demonstration of electron confinement in so-called quantum corrals by Michael F. Crommie et al., and the subsequent Quantum mirage experiment, where the Kondo signature of an adatom was reflected from one focus to another in an elliptical quantum corral. Atomic manipulation has also sparked interest as a computation platform. Andreas J. Heinrich et al. built logic gates out of molecular cascades of CO adsorbates, and Kalff et al. demonstrated a rewritable kilobyte memory made of individual atoms. Recent experiments on artificial lattice structures have utilized atomic manipulation techniques to study the electronic properties of Lieb lattices, artificial graphene and Sierpiński triangles.
7
Physical Chemistry
The decay of the positive muon into a positron and two neutrinos occurs via the weak interaction process after a mean lifetime of τ = 2.197034(21) μs: Parity violation in the weak interaction leads in this more complicated case (three body decay) to an anisotropic distribution of the positron emission with respect to the spin direction of the μ at the decay time. The positron emission probability is given by where is the angle between the positron trajectory and the μ-spin, and is an intrinsic asymmetry parameter determined by the weak decay mechanism. This anisotropic emission constitutes in fact the basics for the μSR technique. The average asymmetry is measured over a statistical ensemble of implanted muons and it depends on further experimental parameters, such as the beam spin polarization , close to one, as already mentioned. Theoretically =1/3 is obtained if all emitted positrons are detected with the same efficiency, irrespective of their energy. Practically, values of ≈ 0.25 are routinely obtained. The muon spin motion may be measured over a time scale dictated by the muon decay, i.e. a few times τ, roughly 10 µs. The asymmetry in the muon decay correlates the positron emission and the muon spin directions. The simplest example is when the spin direction of all muons remains constant in time after implantation (no motion). In this case the asymmetry shows up as an imbalance between the positron counts in two equivalent detectors placed in front and behind the sample, along the beam axis. Each of them records an exponentially decaying rate as a function of the time t elapsed from implantation, according to with for the detector looking towards and away from the spin arrow, respectively. Considering that the huge muon spin polarization is completely outside thermal equilibrium, a dynamical relaxation towards the equilibrium unpolarized state typically shows up in the count rate, as an additional decay factor in front of the experimental asymmetry parameter, A. A magnetic field parallel to the initial muon spin direction probes the dynamical relaxation rate as a function of the additional muon Zeeman energy, without introducing additional coherent spin dynamics. This experimental arrangement is called Longitudinal Field (LF) μSR. A special case of LF μSR is Zero Field (ZF) μSR, when the external magnetic field is zero. This experimental condition is particularly important since it allows to probe any internal quasi-static (i.e. static on the muon time-scale) magnetic field of field distribution at the muon site. Internal quasi-static fields may appear spontaneously, not induced by the magnetic response of the sample to an external field They are produced by disordered nuclear magnetic moments or, more importantly, by ordered electron magnetic moments and orbital currents. Another simple type of μSR experiment is when implanted all muon spins precess coherently around the external magnetic field of modulus , perpendicular to the beam axis, causing the count unbalance to oscillate at the corresponding Larmor frequency between the same two detectors, according to Since the Larmor frequency is , with a gyromagnetic ratio Mrad(sT), the frequency spectrum obtained by means of this experimental arrangement provides a direct measure of the internal magnetic field intensity distribution. The distribution produces an additional decay factor of the experimental asymmetry A. This method is usually referred to as Transverse Field (TF) μSR. A more general case is when the initial muon spin direction (coinciding with the detector axis) forms an angle with the field direction. In this case the muon spin precession describes a cone which results in both a longitudinal component, , and a transverse precessing component, , of the total asymmetry. ZF μSR experiments in the presence of a spontaneous internal field fall into this category as well.
7
Physical Chemistry
Density functional theory seeks to solve for an approximate form of the electronic density of a system. In general, atoms are split into ionic cores and valence electrons. The ionic cores (nuclei plus non-bonding electrons) are assumed to be stable and are treated as a single object. Each valence electron is treated separately. Thus, for example, a Lithium atom is treated as two bodies – Li+ and e- – while oxygen is treated as three bodies, namely O and 2e. The “true” ground state of a crystal system is generally unsolvable. However, the variational theorem assures us that any guess as to the electronic state function of a system will overestimate the ground state energy. Thus, by beginning with a suitably parametrized guess and minimizing the energy with respect to each of those parameters, an extremely accurate prediction may be made. The question as to what one's initial guess should be is a topic of active research. In the large majority of crystal systems, electronic relaxation times are orders of magnitude shorter than ionic relaxation times. Thus, an iterative scheme is adopted. First, the ions are considered fixed and the electronic state is relaxed by considering the ionic and electron-electron pair potentials. Next, the electronic states are considered fixed and the ions are allowed to move under the influence of the electronic and ion-ion pair potentials. When the decrease in energy between two iterative steps is sufficiently small, the structure of the crystal is considered solved.
3
Analytical Chemistry
The He Jiankui affair is a scientific and bioethical controversy concerning the use of genome editing following its first use on humans by Chinese scientist He Jiankui, who edited the genomes of human embryos in 2018. He became widely known on 26 November 2018 after he announced that he had created the first human genetically edited babies. He was listed in the Time 100 most influential people of 2019. The affair led to ethical and legal controversies, resulting in the indictment of He and two of his collaborators, Zhang Renli and Qin Jinzhou. He eventually received widespread international condemnation. He Jiankui, working at the Southern University of Science and Technology (SUSTech) in Shenzhen, China, started a project to help people with HIV-related fertility problems, specifically involving HIV-positive fathers and HIV-negative mothers. The subjects were offered standard in vitro fertilisation services and in addition, use of CRISPR gene editing (CRISPR/Cas9), a technology for modifying DNA. The embryos genomes were edited to remove the CCR5 gene in an attempt to confer genetic resistance to HIV. The clinical project was conducted secretly until 25 November 2018, when MIT Technology Review' broke the story of the human experiment based on information from the Chinese clinical trials registry. Compelled by the situation, he immediately announced the birth of genome-edited babies in a series of five YouTube videos the same day. The first babies, known by their pseudonyms Lulu () and Nana (), are twin girls born in October 2018, and the second birth or the third baby born was in 2019, named Amy. He reported that the babies were born healthy. His actions received widespread criticism, and included concern for the girls' well-being. After his presentation on the research at the Second International Summit on Human Genome Editing at the University of Hong Kong on 28 November 2018, Chinese authorities suspended his research activities the following day. On 30 December 2019, Chinese authorities announced that he was found guilty of forging documents and unethical conduct; he was sentenced to three years in prison with a three-million-yuan fine (US$430,000). Zhang Renli and Qin Jinzhou received an 18-month prison sentence, a 500,000-yuan fine and were banned from working in assisted reproductive technology for life. He Jiankui has been variously referred to as a "rogue scientist", "China's Dr Frankenstein", and a "mad genius". The impact of human gene editing on resistance to HIV infection and other body functions in experimental infants remains controversial. The World Health Organization had issued three reports on the guidelines of human genome editing since 2019, and the Chinese government has prepared regulations since May 2019.
1
Biochemistry
P (systematically araBp) is a promoter found in bacteria and especially as part of plasmids used in laboratory studies. The promoter is a part of the arabinose operon whose name derives from the genes it regulates transcription of: araB, araA, and araD. In E. coli, the P promoter is adjacent to the P promoter (systematically araCp), which transcribes the araC gene in the opposite direction. araC encodes the AraC protein, which regulates activity of both the P and P promoters. The cyclic AMP receptor protein CAP binds between the P and P promoters, stimulating transcription of both when bound by cAMP.
1
Biochemistry
The term kagome lattice was coined by Japanese physicist Kôdi Husimi, and first appeared in a 1951 paper by his assistant Ichirō Shōji. The kagome lattice in this sense consists of the vertices and edges of the trihexagonal tiling. Despite the name, these crossing points do not form a mathematical lattice. A related three dimensional structure formed by the vertices and edges of the quarter cubic honeycomb, filling space by regular tetrahedra and truncated tetrahedra, has been called a hyper-kagome lattice. It is represented by the vertices and edges of the quarter cubic honeycomb, filling space by regular tetrahedra and truncated tetrahedra. It contains four sets of parallel planes of points and lines, each plane being a two dimensional kagome lattice. A second expression in three dimensions has parallel layers of two dimensional lattices and is called an orthorhombic-kagome lattice. The trihexagonal prismatic honeycomb represents its edges and vertices. Some minerals, namely jarosites and herbertsmithite, contain two-dimensional layers or three-dimensional kagome lattice arrangement of atoms in their crystal structure. These minerals display novel physical properties connected with geometrically frustrated magnetism. For instance, the spin arrangement of the magnetic ions in CoVO rests in a kagome lattice which exhibits fascinating magnetic behavior at low temperatures. Quantum magnets realized on Kagome metals have been discovered to exhibit many unexpected electronic and magnetic phenomena. It is also proposed that SYK behavior can be observed in two dimensional kagome lattice with impurities. The term is much in use nowadays in the scientific literature, especially by theorists studying the magnetic properties of a theoretical kagome lattice. See also: Kagome crests.
3
Analytical Chemistry
Four versions of Ficks law for binary gas mixtures are given below. These assume: thermal diffusion is negligible; the body force per unit mass is the same on both species; and either pressure is constant or both species have the same molar mass. Under these conditions, Ref. shows in detail how the diffusion equation from the kinetic theory of gases reduces to this version of Ficks law: where is the diffusion velocity of species . In terms of species flux this is If, additionally, , this reduces to the most common form of Fick's law, If (instead of or in addition to ) both species have the same molar mass, Fick's law becomes where is the mole fraction of species .
7
Physical Chemistry
This technique brings together protein and precipitation solutions without premixing them, but instead, injecting them through either sides of a channel, allowing equilibrium through diffusion. The two solutions come into contact in a reagent chamber, both at their maximum concentrations, initiating spontaneous nucleation. As the system comes into equilibrium, the level of supersaturation decreases, favouring crystal growth.
3
Analytical Chemistry
A reductone is a special class of organic compounds. They are enediols with a carbonyl group adjacent to the enediol group, i.e. RC(OH)=C(OH)-C(O)R. The enediol structure is stabilized by the resonance resulting from the tautomerism with the adjacent carbonyl. Therefore, the chemical equilibrium produces mainly the enediol form rather than the keto form. Reductones are reducing agents, thus efficacious antioxidants. Some are fairly strong acids. Examples of reductones are tartronaldehyde, reductic acid and ascorbic acid.
0
Organic Chemistry
The secretion pattern of thyrotropin (TSH) is shaped by infradian, circadian and ultradian rhythms. Infradian rhythmis are mainly represented by circannual variation mirroring the seasonality of thyroid function. Circadian rhythms lead to a peak secretion (acrophase) around midnight and nadir concentrations around noon and in the early afternoon. A similar pattern is observed for triiodothyronine, however with a phase shift. Pulsatile release contributes to the ultradian rhythm of TSH concentration with about 10 pulses per 24 hours. The amplitude of the circadian and ultradian rhythms is reduced in severe non-thyroidal illness syndrome (TACITUS). Contemporary theories assume that autocrine and paracrine (ultrashort) feedback mechanisms controlling TSH secretion within the anterior pituitary gland are a major factor contributing to the evolution of its pulsatility.
1
Biochemistry
The genes provided in this section are only a small number of the vast amount of oscillating genes found in the world. These genes were selected because they were determined to be the some of most important genes in regulating the circadian rhythm of their respective classification.
1
Biochemistry
The extent of reaction is a useful quantity in computations with equilibrium reactions. Consider the reaction :2 A ⇌ B + 3 C where the initial amounts are , and the equilibrium amount of A is 0.5 mol. We can calculate the extent of reaction in equilibrium from its definition In the above, we note that the stoichiometric number of a reactant is negative. Now when we know the extent, we can rearrange the equation and calculate the equilibrium amounts of B and C.
7
Physical Chemistry
Sir William Herschel was one of the first to advocate the use of fingerprinting in the identification of criminal suspects. While working for the Indian Civil Service, he began to use thumbprints on documents as a security measure to prevent the then-rampant repudiation of signatures in 1858. In 1877 at Hooghly (near Kolkata), Herschel instituted the use of fingerprints on contracts and deeds, and he registered government pensioners fingerprints to prevent the collection of money by relatives after a pensioners death. In 1880, Henry Faulds, a Scottish surgeon in a Tokyo hospital, published his first paper on the subject in the scientific journal Nature, discussing the usefulness of fingerprints for identification and proposing a method to record them with printing ink. He established their first classification and was also the first to identify fingerprints left on a vial. Returning to the UK in 1886, he offered the concept to the Metropolitan Police in London, but it was dismissed at that time. Faulds wrote to Charles Darwin with a description of his method, but, too old and ill to work on it, Darwin gave the information to his cousin, Francis Galton, who was interested in anthropology. Having been thus inspired to study fingerprints for ten years, Galton published a detailed statistical model of fingerprint analysis and identification and encouraged its use in forensic science in his book Finger Prints. He had calculated that the chance of a "false positive" (two different individuals having the same fingerprints) was about 1 in 64 billion. Juan Vucetich, an Argentine chief police officer, created the first method of recording the fingerprints of individuals on file. In 1892, after studying Galtons pattern types, Vucetich set up the worlds first fingerprint bureau. In that same year, Francisca Rojas of Necochea was found in a house with neck injuries whilst her two sons were found dead with their throats cut. Rojas accused a neighbour, but despite brutal interrogation, this neighbour would not confess to the crimes. Inspector Alvarez, a colleague of Vucetich, went to the scene and found a bloody thumb mark on a door. When it was compared with Rojas' prints, it was found to be identical with her right thumb. She then confessed to the murder of her sons. A Fingerprint Bureau was established in Calcutta (Kolkata), India, in 1897, after the Council of the Governor General approved a committee report that fingerprints should be used for the classification of criminal records. Working in the Calcutta Anthropometric Bureau, before it became the Fingerprint Bureau, were Azizul Haque and Hem Chandra Bose. Haque and Bose were Indian fingerprint experts who have been credited with the primary development of a fingerprint classification system eventually named after their supervisor, Sir Edward Richard Henry. The Henry Classification System, co-devised by Haque and Bose, was accepted in England and Wales when the first United Kingdom Fingerprint Bureau was founded in Scotland Yard, the Metropolitan Police headquarters, London, in 1901. Sir Edward Richard Henry subsequently achieved improvements in dactyloscopy. In the United States, Henry P. DeForrest used fingerprinting in the New York Civil Service in 1902, and by December 1905, New York City Police Department Deputy Commissioner Joseph A. Faurot, an expert in the Bertillon system and a fingerprint advocate at Police Headquarters, introduced the fingerprinting of criminals to the United States.
3
Analytical Chemistry
In catenane nomenclature, a number in square brackets precedes the word "catenane" in order to indicate how many rings are involved. Discrete catenanes up to a [7]catenane have been synthesised.
6
Supramolecular Chemistry
Depending on the general substrate on which the assay principle is applied: #Bioassay: when the response is biological activity of live objects. Examples include ##in vivo, whole organism (e.g. mouse or other subject injected with a drug) ##ex vivo body part (e.g. leg of a frog) ##ex vivo organ (e.g. heart of a dog) ##ex vivo part of an organ (e.g. a segment of an intestine). ##tissue (e.g. limulus lysate) ##cell (e.g. platelets) #Ligand binding assay when a ligand (usually a small molecule) binds a receptor (usually a large protein). #Immunoassay when the response is an antigen antibody binding type reaction.
1
Biochemistry
In the regulation of heating and cooling, thermostats that operate over a wide range of temperatures are used. In these, one end of the bimetallic strip is mechanically fixed and attached to an electrical power source, while the other (moving) end carries an electrical contact. In adjustable thermostats another contact is positioned with a regulating knob or lever. The position so set controls the regulated temperature, called the set point. Some thermostats use a mercury switch connected to both electrical leads. The angle of the entire mechanism is adjustable to control the set point of the thermostat. Depending upon the application, a higher temperature may open a contact (as in a heater control) or it may close a contact (as in a refrigerator or air conditioner). The electrical contacts may control the power directly (as in a household iron) or indirectly, switching electrical power through a relay or the supply of natural gas or fuel oil through an electrically operated valve. In some natural gas heaters the power may be provided with a thermocouple that is heated by a pilot light (a small, continuously burning, flame). In devices without pilot lights for ignition (as in most modern gas clothes dryers and some natural gas heaters and decorative fireplaces) the power for the contacts is provided by reduced household electrical power that operates a relay controlling an electronic ignitor, either a resistance heater or an electrically powered spark generating device.
8
Metallurgy
In organic chemistry, the Baker–Nathan effect is observed with reaction rates for certain chemical reactions with certain substrates where the order in reactivity cannot be explained solely by an inductive effect of substituents. This effect was described in 1935 by John W. Baker and W. S. Nathan. They examined the chemical kinetics for the reaction of pyridine with benzyl bromide to form a pyridinium salt, and a series of benzyl bromides having different alkyl groups as substituents at the para position. The reaction is facilitated by electron-releasing substituents (the inductive effect) and in general the observed order (with decreasing reactivity) is tert-butyl > isopropyl > ethyl > methyl. The observed order in this particular reaction however was methyl > ethyl> isopropyl > tert-butyl. In 1935 Baker and Nathan explained the observed difference in terms of a conjugation effect and in later years after the advent of hyperconjugation (1939) as its predecessor. A fundamental problem with the effect is that differences in the observed order are relatively small and therefore difficult to measure accurately. Other researchers have found similar results or very different results. An alternative explanation for the effect is differential solvation as orders invert on going from the solution phase to the gas phase. Today, the conjugation of neighbouring pi orbitals and polarised sigma bonds is known as hyperconjugation. Numerous anomalous physical measurements, including bond lengths and dipole moments, have been examined through this concept. The original formulation of the Baker-Nathan effect is no longer employed due to more logical reasons for rate accelerations in solutions and its historical context is discussed by Saltzman.
7
Physical Chemistry
Aluminium-based nanogalvanic alloys are characterized by their galvanic microstructure, which comprises an anodic matrix consisting of aluminum, an aluminum alloy, and a cathodic dispersed phase of another metal composition. These other metals may be tin, magnesium, silicon, bismuth, lead, gallium, indium, zinc, carbon, or a mixture of these metals. These alloys produce hydrogen gas when the cathodic disperse phase forms galvanic couples with the anodic matrix and the resulting galvanic metal microstructure comes in contact with water or any liquid containing water. The nanostructured galvanic couple, with aluminium as the anode and the other metal element as the cathode, rapidly disturbs the formation of the native oxide layer and continually exposes fresh aluminium surfaces to hydrolysis. The size of the particles that make up the cathodic disperse phase can range from less than 50 nanometers in length to less than 1000 nanometers in length. No additional health hazards have been observed with the handling of the nanogalvanic powders. The by-products of the powder reaction with water was also found to be non-toxic. In terms of performance, the aluminium-based nanogalvanic alloys were demonstrated to produce 1000 ml. of hydrogen gas per gram of aluminium in less than 1 minute and 1340 ml—100% of the theoretical yield at 295 K and 1 atm.—in 3 minutes without the need for hazardous or costly materials, or additional processes. Aluminium-based nanogalvanic alloys can be manufactured by means of low energy ball milling at room temperature or at lower temperatures and remain stable at standard temperature, pressure, and humidity levels. In 2017, ARL researchers discovered that the hydrogen generation rate increases by almost two-fold when the aluminium-based nanogalvanic alloy powder comes in contact with urine, when compared with pure water.
2
Environmental Chemistry
Sterilization is an important factor to consider during the fermentation of foods. Failing to completely remove any microbes from equipment and storing vessels may result in the multiplication of harmful organisms within the ferment, potentially increasing the risks of food borne illnesses like botulism. However, botulism in vegetable ferments is only possible when not properly canned. The production of off smells and discoloration may be indications that harmful bacteria may have been introduced to the food. Alaska has witnessed a steady increase of cases of botulism since 1985. It has more cases of botulism than any other state in the United States of America. This is caused by the traditional Alaska Native practice of allowing animal products such as whole fish, fish heads, walrus, sea lion, and whale flippers, beaver tails, seal oil, and birds, to ferment for an extended period of time before being consumed. The risk is exacerbated when a plastic container is used for this purpose instead of the old-fashioned, traditional method, a grass-lined hole, as the Clostridium botulinum bacteria thrive in the anaerobic conditions created by the air-tight enclosure in plastic. The World Health Organization has classified pickled foods as possibly carcinogenic, based on epidemiological studies. Other research found that fermented food contains a carcinogenic by-product, ethyl carbamate (urethane). "A 2009 review of the existing studies conducted across Asia concluded that regularly eating pickled vegetables roughly doubles a person's risk for esophageal squamous cell carcinoma."
1
Biochemistry
One way of understanding the carcinogenic effects of benzene is by examining the products of biological oxidation. Pure benzene, for example, oxidizes in the body to produce an epoxide, benzene oxide, which is not excreted readily and can interact with DNA to produce harmful mutations.
2
Environmental Chemistry
2-amino-4-deoxychorismate dehydrogenase - 2-dehydropantolactone reductase (B-specific) - 2-methylacyl-CoA dehydrogenase - 2-nitropropane dioxygenase - 2-oxobutyrate synthase - (2,3-dihydroxybenzoyl)adenylate synthase - 2,4-Dihydroxy-1,4-benzoxazin-3-one-glucoside dioxygenase - 2010107G12Rik - 27-hydroxycholesterol 7alpha-monooxygenase - 3 end - 3 flanking region - 3-hydroxy-2-methylpyridinecarboxylate dioxygenase - 3-Ketosteroid 9alpha-monooxygenase - 3-oxoacyl-(acyl-carrier-protein) reductase (NADH) - (3,5-dihydroxyphenyl)acetyl-CoA 1,2-dioxygenase - 3(or 17)a-hydroxysteroid dehydrogenase - 3110001I22Rik - 3alpha-hydroxyglycyrrhetinate dehydrogenase - 4932414N04Rik - 3alpha-hydroxysteroid dehydrogenase (A-specific) - 3alpha,7alpha,12alpha-trihydroxy-5beta-cholestanoyl-CoA 24-hydroxylase - 3alpha,7alpha,12alpha-trihydroxycholestan-26-al 26-oxidoreductase - 4-Cresol dehydrogenase (hydroxylating) - 4-Hydroxycyclohexanecarboxylate dehydrogenase - 4-hydroxyphenylacetaldehyde oxime monooxygenase - 4-hydroxyphenylpyruvate oxidase - 4-Nitrophenol 4-monooxygenase - 4933425L06Rik - 5 end - 5 flanking region - 5-pyridoxate dioxygenase - 6-endo-hydroxycineole dehydrogenase - 7-deoxyloganin 7-hydroxylase - 7beta-hydroxysteroid dehydrogenase (NADP+) - 8-oxocoformycin reductase - 12beta-hydroxysteroid dehydrogenase - 25-hydroxycholesterol 7α-hydroxylase -
1
Biochemistry
Kai Simons honours and awards include: * 1975 Federation of European Biochemical Society Anniversary Prize * 1984 Honorary Professor, University of Heidelberg, Germany * 1989 Lamport Visiting Professor (Columbia, New York) * 1990 Histochemical Society Lecture * 1990 Keith R. Porter Lecture, American Society of Cell Biology * 1991 Anders Jahre Prize for Medical Research * 1991 NICHD Lectureship in Cell Biology * 1993 Carl Zeiss Lecture, German Society for Cell Biology * 1994 Harvey Society Lecture * 1996 Dunham Lecturer, Harvard University * 1996 Foreign Member of the American Academy of Arts and Sciences * 1997 Academia Europaea * 1997 Adam Neville Lecture, University of Dundee, UK * 1997 Foreign Member of the National Academy of Sciences, USA * 1997 Runeberg Prize, Finland * 1998 Academy of Sciences Leopoldina * 1998 Choh Hao Li Memorial Lecture in Biochemical Endocrinology, University of California, Berkeley * 1999 Doctor Honoris Causa, University of Oulu, Finland * 2000 President of the European Life Scientist Organisation * 2001 Honorary member of the German Society for Cell Biology * 2001 ISI Highly cited researcher * 2001 Schleiden Medal of Academy Leopoldina * 2002 Hoppe-Seyler Lecture, Society of Biology and Molecular Biology Germany * 2003 Albert Wander Prize, University of Bern, Switzerland * 2003 Matti Äyräpää Prize, Finland * 2003 Doctor Honoris Causa, University of Leuven, Belgium * 2003 Honorary Professor at TU Dresden * 2003 Prix Mondial Nessim Habif, University of Geneva, Switzerland * 2004 Virchow Lecture and Medal, University of Würzburg, Germany * 2005 Foundation Day Lecture, Centre for Cellular and Molecular Biology, Hyderabad, India * 2005 van Deenen Medal, Utrecht, The Netherlands * 2006 A.I. Virtanen Medal, Finland * 2006 Honorary member of the Societas Biochemica, Biophysica et Microbiologica Fenniae * 2007 Order of Merit of the Free State of Saxony * 2010 Doctor honoris causa, University of Kuopio, Finland * 2011 Doctor honoris causa, University of Geneva, Switzerland * 2016 Robert Koch Medal Kai Simons was and is also a member of numerous societies, committees and organisations, as well as an editor for several scientific journals.
1
Biochemistry
Phosphonates are esters of phosphonic acid and have the general formula RP(=O)(OR'). Phosphonates have many technical applications, a well-known member being glyphosate, better known as Roundup. With the formula (HO)P(O)CHNHCHCOH, this derivative of glycine is one of the most widely used herbicides. Bisphosphonates are a class of drugs to treat osteoporosis. The nerve gas agent sarin, containing both C–P and F–P bonds, is a phosphonate. Phosphinates feature two P–C bonds, with the general formula RP(=O)(OR'). A commercially significant member is the herbicide glufosinate. Similar to glyphosate mentioned above, it has the structure CHP(O)(OH)CHCHCH(NH)COH. The Michaelis–Arbuzov reaction is the main method for the synthesis of these compounds. For example, dimethylmethylphosphonate (see figure above) arises from the rearrangement of trimethylphosphite, which is catalyzed by methyl iodide. In the Horner–Wadsworth–Emmons reaction and the Seyferth–Gilbert homologation, phosphonates are used in reactions with carbonyl compounds. The Kabachnik–Fields reaction is a method for the preparation of aminophosphonates. These compounds contain a very inert bond between phosphorus and carbon. Consequently, they hydrolyze to give phosphonic and phosphinic acid derivatives, but not phosphate.
0
Organic Chemistry
Kaede is a photoactivatable fluorescent protein naturally originated from a stony coral, Trachyphyllia geoffroyi. Its name means "maple" in Japanese. With the irradiation of ultraviolet light (350–400 nm), Kaede undergoes irreversible photoconversion from green fluorescence to red fluorescence. Kaede is a homotetrameric protein with the size of 116 kDa. The tetrameric structure was deduced as its primary structure is only 28 kDa. This tetramerization possibly makes Kaede have a low tendency to form aggregates when fused to other proteins.
1
Biochemistry
First, the coverage and quality of an interactome has to be evaluated. Interactomes are never complete, given the limitations of experimental methods. For instance, it has been estimated that typical Y2H screens detect only 25% or so of all interactions in an interactome. The coverage of an interactome can be assessed by comparing it to benchmarks of well-known interactions that have been found and validated by independent assays. Other methods filter out false positives calculating the similarity of known annotations of the proteins involved or define a likelihood of interaction using the subcellular localization of these proteins.
1
Biochemistry
The nomenclature is based on [n × m] G, n corresponds to the number of ligands above the metal ion level, m the number below ones. In case of using only one ligand type, the homoleptic grid is formed in a square [nxn] structure. When using different ligands arise heteroleptic complexes, however, compete with the homoleptic. The number of metal ions is always n + m.
6
Supramolecular Chemistry
The primary concerns to take into consideration when using a CDA in NMR spectroscopy are kinetic resolution, racemization during the derivatization reaction and that the reagent should have 100% optical purity. Kinetic resolution is especially significant when determining optical purity, but it is somewhat negligible when the CDA is being used to assign the absolute configuration of an optically pure substrate. Kinetic resolution can be overcome using excess of the CDA. Racemization can occur to either the CDA or the substrate and in both cases it has the potential to significantly affect the results.
4
Stereochemistry
Pricing for progesterone can vary depending location, insurance coverage, discount coupons, quantity, shortages, manufacturers, brand or generic versions, different pharmacies, and so on. As of currently, 30 capsules of 100 mg of the generic version, Prometrium, from CVS Pharmacy is around $40 without any discounts or insurance applied. The brand version, Progesterone, is around $450 for 30 capsules without any discounts or insurance applied. In comparison, Walgreens offers 30 capsules of 100 mg in the generic version for $51 without insurance or coupons applied. The brand name costs around $431 for 30 capsules of 100 mg.
0
Organic Chemistry
Many secondary amines react with carbon disulfide and sodium hydroxide to form dithiocarbamate salts: Ammonia reacts with CS similarly: :2 NH + CS → HNCSNH Dithiocarbamate salts are pale colored solids that are soluble in water and polar organic solvents.
0
Organic Chemistry
Access to oil was and still is a major factor in several military conflicts of the 20th century, including World War II, during which oil facilities were a major strategic asset and were extensively bombed. The German invasion of the Soviet Union included the goal to capture the Baku oilfields, as it would provide much-needed oil supplies for the German military which was suffering from blockades. Oil exploration in North America during the early 20th century later led to the U.S. becoming the leading producer by mid-century. As petroleum production in the U.S. peaked during the 1960s, the United States was surpassed by Saudi Arabia and the Soviet Union in total output. In 1973, Saudi Arabia and other Arab nations imposed an oil embargo against the United States, United Kingdom, Japan and other Western nations which supported Israel in the Yom Kippur War of October 1973. The embargo caused an oil crisis. This was followed by the 1979 oil crisis, which was caused by a drop in oil production in the wake of the Iranian Revolution and caused oil prices to more than double.
7
Physical Chemistry
The adsorption of ensemble molecules on a surface or interface can be divided into two processes: adsorption and desorption. If the adsorption rate wins the desorption rate, the molecules will accumulate over time giving the adsorption curve over time. If the desorption rate is larger, the number of molecules on the surface will decrease over time. The adsorption rate is dependent on the temperature, the diffusion rate of the solute (related to mean free path for pure gas), and the energy barrier between the molecule and the surface. The diffusion and key elements of the adsorption rate can be calculated using Fick's laws of diffusion and Einstein relation (kinetic theory). Under ideal conditions, when there is no energy barrier and all molecules that diffuse and collide with the surface get adsorbed, the number of molecules adsorbed at a surface of area on an infinite area surface can be directly integrated from Fick's second law differential equation to be: where is the surface area (unit m), is the number concentration of the molecule in the bulk solution (unit #/m), is the diffusion constant (unit m/s), and is time (unit s). Further simulations and analysis of this equation show that the square root dependence on the time is originated from the decrease of the concentrations near the surface under ideal adsorption conditions. Also, this equation only works for the beginning of the adsorption when a well-behaved concentration gradient forms near the surface. Correction on the reduction of the adsorption area and slowing down of the concentration gradient evolution have to be considered over a longer time. Under real experimental conditions, the flow and the small adsorption area always make the adsorption rate faster than what this equation predicted, and the energy barrier will either accelerate this rate by surface attraction or slow it down by surface repulsion. Thus, the prediction from this equation is often a few to several orders of magnitude away from the experimental results. Under special cases, such as a very small adsorption area on a large surface, and under chemical equilibrium when there is no concentration gradience near the surface, this equation becomes useful to predict the adsorption rate with debatable special care to determine a specific value of in a particular measurement. The desorption of a molecule from the surface depends on the binding energy of the molecule to the surface and the temperature. The typical overall adsorption rate is thus often a combined result of the adsorption and desorption.
7
Physical Chemistry
Semicarbazide products (semicarbazones and thiosemicarbazones) are known to have an activity of antiviral, antiinfective and antineoplastic through binding to copper or iron in cells.
0
Organic Chemistry
In chemistry, a regular solution is a solution whose entropy of mixing is equal to that of an ideal solution with the same composition, but is non-ideal due to a nonzero enthalpy of mixing. Such a solution is formed by random mixing of components of similar molar volume and without strong specific interactions, and its behavior diverges from that of an ideal solution by showing phase separation at intermediate compositions and temperatures (a miscibility gap). Its entropy of mixing is equal to that of an ideal solution with the same composition, due to random mixing without strong specific interactions. For two components where is the gas constant, the total number of moles, and the mole fraction of each component. Only the enthalpy of mixing is non-zero, unlike for an ideal solution, while the volume of the solution equals the sum of volumes of components.
7
Physical Chemistry
Gestonorone caproate is a potent, long-acting, and pure progestogen, possessing no androgenic, anabolic, antiandrogenic, estrogenic, antiestrogenic, glucocorticoid, mineralocorticoid, or teratogenic effects. It is approximately 20 to 25 times more potent than progesterone or hydroxyprogesterone caproate in animal bioassays when all are given by subcutaneous injection. In humans, 100 or 200 mg intramuscular gestonorone caproate has been said to be equivalent to 1,000 mg intramuscular hydroxyprogesterone caproate. Hence, gestonorone caproate is approximately 5- to 10-fold more potent than hydroxyprogesterone caproate in humans. The biological effects of gestonorone caproate in women have been studied. Like other potent progestins, gestonorone caproate possesses potent antigonadotropic activity and is capable of markedly suppressing the gonadal production and circulating levels of sex hormones such as testosterone and estradiol. A clinical study found that 400 mg/week intramuscular gestonorone caproate suppressed testosterone levels by 75% in men, while orchiectomy as a comparator reduced testosterone levels by 91%. Levels of luteinizing hormone, conversely, remained unchanged. In general, progestogens can maximally suppress testosterone levels by about 70 to 80%. In accordance with its lack of glucocorticoid activity, gestonorone caproate has no anticorticotropic effects, and does not influence the secretion of adrenocorticotropic hormone. 17α-Hydroxyprogesterone has weak progestogenic activity, but C17α esterification results in higher progestogenic activity. Of a variety of different esters, the caproate (hexanoate) ester was found to have the strongest progestogenic activity, and this formed the basis for the development of gestonorone caproate, as well as other caproate progestogen esters such as hydroxyprogesterone caproate. Gestonorone caproate has been found to decrease the weights of the prostate gland and seminal vesicles by 40 to 70% in adult male rats. It has been shown in canines to mediate these effects both via its antigonadotropic effects and by direct actions in these tissues. Gestonorone caproate decreases the uptake of testosterone into the prostate gland. It has also been found to have direct antiproliferative effects on human ovarian cancer cells in vitro. Gestonorone caproate has been reported to act to some extent as a 5α-reductase inhibitor, similarly to progesterone.
4
Stereochemistry
C3 carbon fixation is prone to photorespiration (PR) during dehydration, accumulating toxic glycolate products. In the 2000s scientists used computer simulation combined with an optimization algorithm to figure out what parts of the metabolic pathway may be tuned to improve photosynthesis. According to simulation, improving glycolate metabolism would help significantly to reduce photorespiration. Instead of optimizing specific enzymes on the PR pathway for glycolate degradation, South et al. decided to bypass PR altogether. In 2019, they transferred Chlamydomonas reinhardtii glycolate dehydrogenase and Cucurbita maxima malate synthase into the chloroplast of tobacco (a model organism). These enzymes, plus the chloroplasts own, create a catabolic cycle: acetyl-CoA combines with glyoxylate to form malate, which is then split into pyruvate and CO; the former in turn splits into acetyl-CoA and CO. By forgoing all transport among organelles, all the CO released will go into increasing the CO concentration in the chloroplast, helping with refixation. The end result is 24% more biomass. An alternative using E. coli' glycerate pathway produced a smaller improvement of 13%. They are now working on moving this optimization into other crops like wheat.
5
Photochemistry