state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· | simp only [him.not_le] | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.349_0.CflASCTDE9UCom5 | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ -(π / 2) ≤ arg z ↔ False | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
| rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs] | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.349_0.CflASCTDE9UCom5 | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ z.re ≠ 0
case inr.inr z : ℂ hre : z.re < 0 him : z.im < 0 ⊢ 0 < abs z | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
| exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.349_0.CflASCTDE9UCom5 | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ -(π / 2) < arg z ↔ 0 < z.re ∨ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
| rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] | lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.364_0.CflASCTDE9UCom5 | lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ (0 ≤ z.re ∨ 0 ≤ z.im) ∧ ¬(z.re = 0 ∧ z.im < 0) ↔ 0 < z.re ∨ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
| rcases lt_trichotomy z.re 0 with hre | hre | hre | lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.364_0.CflASCTDE9UCom5 | lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl
z : ℂ
hre : z.re < 0
⊢ (0 ≤ z.re ∨ 0 ≤ z.im) ∧ ¬(z.re = 0 ∧ z.im < 0) ↔ 0 < z.re ∨ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· | simp [hre.ne, hre.not_le, hre.not_lt] | lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.364_0.CflASCTDE9UCom5 | lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
z : ℂ
hre : z.re = 0
⊢ (0 ≤ z.re ∨ 0 ≤ z.im) ∧ ¬(z.re = 0 ∧ z.im < 0) ↔ 0 < z.re ∨ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· | simp [hre] | lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.364_0.CflASCTDE9UCom5 | lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr
z : ℂ
hre : 0 < z.re
⊢ (0 ≤ z.re ∨ 0 ≤ z.im) ∧ ¬(z.re = 0 ∧ z.im < 0) ↔ 0 < z.re ∨ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· | simp [hre, hre.le, hre.ne'] | lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.364_0.CflASCTDE9UCom5 | lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ |arg z| ≤ π / 2 ↔ 0 ≤ z.re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
| rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff] | @[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.371_0.CflASCTDE9UCom5 | @[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
⊢ ↑(arg ((starRingEnd ℂ) x)) = -↑(arg x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
| by_cases h : arg x = π | @[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.377_0.CflASCTDE9UCom5 | @[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case pos
x : ℂ
h : arg x = π
⊢ ↑(arg ((starRingEnd ℂ) x)) = -↑(arg x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> | simp [arg_conj, h] | @[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> | Mathlib.Analysis.SpecialFunctions.Complex.Arg.377_0.CflASCTDE9UCom5 | @[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg
x : ℂ
h : ¬arg x = π
⊢ ↑(arg ((starRingEnd ℂ) x)) = -↑(arg x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> | simp [arg_conj, h] | @[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> | Mathlib.Analysis.SpecialFunctions.Complex.Arg.377_0.CflASCTDE9UCom5 | @[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
⊢ ↑(arg x⁻¹) = -↑(arg x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
| by_cases h : arg x = π | @[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.382_0.CflASCTDE9UCom5 | @[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case pos
x : ℂ
h : arg x = π
⊢ ↑(arg x⁻¹) = -↑(arg x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> | simp [arg_inv, h] | @[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> | Mathlib.Analysis.SpecialFunctions.Complex.Arg.382_0.CflASCTDE9UCom5 | @[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg
x : ℂ
h : ¬arg x = π
⊢ ↑(arg x⁻¹) = -↑(arg x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> | simp [arg_inv, h] | @[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> | Mathlib.Analysis.SpecialFunctions.Complex.Arg.382_0.CflASCTDE9UCom5 | @[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
hi : 0 < x.im
⊢ arg (-x) = arg x - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
| rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] | theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.387_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
hi : 0 < x.im
⊢ -arccos ((-x).re / abs (-x)) = arccos (x.re / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
| simp [neg_div, Real.arccos_neg] | theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.387_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
hi : x.im < 0
⊢ arg (-x) = arg x + π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
| rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] | theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.392_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
hi : x.im < 0
⊢ arccos ((-x).re / abs (-x)) = -arccos (x.re / abs x) + π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
| simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] | theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.392_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
| rcases lt_trichotomy x.im 0 with (hi | hi | hi) | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.397_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl
x : ℂ
hi : x.im < 0
⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· | simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero] | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.397_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
x : ℂ
hi : x.im = 0
⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· | rw [(ext rfl hi : x = x.re)] | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.397_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
x : ℂ
hi : x.im = 0
⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
| rcases lt_trichotomy x.re 0 with (hr | hr | hr) | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.397_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inl
x : ℂ
hi : x.im = 0
hr : x.re < 0
⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· | rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.397_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inl
x : ℂ
hi : x.im = 0
hr : x.re < 0
⊢ 0 = π - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
| simp [hr] | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.397_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inr.inl
x : ℂ
hi : x.im = 0
hr : x.re = 0
⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· | simp [hr, hi, Real.pi_ne_zero] | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.397_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inr.inr
x : ℂ
hi : x.im = 0
hr : 0 < x.re
⊢ arg (-↑x.re) = arg ↑x.re - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· | rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.397_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inr.inr
x : ℂ
hi : x.im = 0
hr : 0 < x.re
⊢ π = 0 - π ↔ 0 < (↑x.re).im ∨ (↑x.re).im = 0 ∧ (↑x.re).re < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
| simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.397_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr
x : ℂ
hi : 0 < x.im
⊢ arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· | simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.397_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
| rcases lt_trichotomy x.im 0 with (hi | hi | hi) | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.412_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl
x : ℂ
hi : x.im < 0
⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· | simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.412_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
x : ℂ
hi : x.im = 0
⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· | rw [(ext rfl hi : x = x.re)] | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.412_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
x : ℂ
hi : x.im = 0
⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
| rcases lt_trichotomy x.re 0 with (hr | hr | hr) | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.412_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inl
x : ℂ
hi : x.im = 0
hr : x.re < 0
⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· | rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.412_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inl
x : ℂ
hi : x.im = 0
hr : x.re < 0
⊢ 0 = π + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
| simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.412_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inr.inl
x : ℂ
hi : x.im = 0
hr : x.re = 0
⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· | simp [hr, hi, Real.pi_ne_zero.symm] | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.412_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inr.inr
x : ℂ
hi : x.im = 0
hr : 0 < x.re
⊢ arg (-↑x.re) = arg ↑x.re + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· | rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.412_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inr.inr
x : ℂ
hi : x.im = 0
hr : 0 < x.re
⊢ π = 0 + π ↔ (↑x.re).im < 0 ∨ (↑x.re).im = 0 ∧ 0 < (↑x.re).re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
| simp [hr] | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.412_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr
x : ℂ
hi : 0 < x.im
⊢ arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· | simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero] | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.412_0.CflASCTDE9UCom5 | theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
hx : x ≠ 0
⊢ ↑(arg (-x)) = ↑(arg x) + ↑π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
| rcases lt_trichotomy x.im 0 with (hi | hi | hi) | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.427_0.CflASCTDE9UCom5 | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl
x : ℂ
hx : x ≠ 0
hi : x.im < 0
⊢ ↑(arg (-x)) = ↑(arg x) + ↑π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· | rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.427_0.CflASCTDE9UCom5 | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
x : ℂ
hx : x ≠ 0
hi : x.im = 0
⊢ ↑(arg (-x)) = ↑(arg x) + ↑π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· | rw [(ext rfl hi : x = x.re)] | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.427_0.CflASCTDE9UCom5 | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
x : ℂ
hx : x ≠ 0
hi : x.im = 0
⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
| rcases lt_trichotomy x.re 0 with (hr | hr | hr) | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.427_0.CflASCTDE9UCom5 | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inl
x : ℂ
hx : x ≠ 0
hi : x.im = 0
hr : x.re < 0
⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· | rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.427_0.CflASCTDE9UCom5 | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inr.inl
x : ℂ
hx : x ≠ 0
hi : x.im = 0
hr : x.re = 0
⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· | exact False.elim (hx (ext hr hi)) | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.427_0.CflASCTDE9UCom5 | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inr.inr
x : ℂ
hx : x ≠ 0
hi : x.im = 0
hr : 0 < x.re
⊢ ↑(arg (-↑x.re)) = ↑(arg ↑x.re) + ↑π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· | rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add] | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.427_0.CflASCTDE9UCom5 | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr
x : ℂ
hx : x ≠ 0
hi : 0 < x.im
⊢ ↑(arg (-x)) = ↑(arg x) + ↑π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· | rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.427_0.CflASCTDE9UCom5 | theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
r : ℝ
hr : 0 < r
θ : ℝ
⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) = toIocMod two_pi_pos (-π) θ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
| have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring | theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.440_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
r : ℝ
hr : 0 < r
θ : ℝ
⊢ toIocMod two_pi_pos (-π) θ ∈ Set.Ioc (-π) π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
| convert toIocMod_mem_Ioc _ _ θ | theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.440_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h.e'_5.h.e'_4
r : ℝ
hr : 0 < r
θ : ℝ
⊢ π = -π + 2 * π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
| ring | theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.440_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
r : ℝ
hr : 0 < r
θ : ℝ
hi : toIocMod two_pi_pos (-π) θ ∈ Set.Ioc (-π) π
⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) = toIocMod two_pi_pos (-π) θ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
| convert arg_mul_cos_add_sin_mul_I hr hi using 3 | theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.440_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h.e'_2.h.e'_1.h.e'_6
r : ℝ
hr : 0 < r
θ : ℝ
hi : toIocMod two_pi_pos (-π) θ ∈ Set.Ioc (-π) π
⊢ cos ↑θ + sin ↑θ * I = cos ↑(toIocMod two_pi_pos (-π) θ) + sin ↑(toIocMod two_pi_pos (-π) θ) * I | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
| simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] | theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.440_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
θ : ℝ
⊢ arg (cos ↑θ + sin ↑θ * I) = toIocMod two_pi_pos (-π) θ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
| rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] | theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.450_0.CflASCTDE9UCom5 | theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
r : ℝ
hr : 0 < r
θ : ℝ
⊢ arg (↑r * (cos ↑θ + sin ↑θ * I)) - θ = 2 * π * ↑⌊(π - θ) / (2 * π)⌋ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
| rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul] | theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.456_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
r : ℝ
hr : 0 < r
θ : ℝ
⊢ ↑(- -⌊(-π + 2 * π - θ) / (2 * π)⌋) * (2 * π) = 2 * π * ↑⌊(π - θ) / (2 * π)⌋ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
| ring_nf | theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.456_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
θ : ℝ
⊢ arg (cos ↑θ + sin ↑θ * I) - θ = 2 * π * ↑⌊(π - θ) / (2 * π)⌋ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
| rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] | theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.464_0.CflASCTDE9UCom5 | theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
r : ℝ
hr : 0 < r
θ : Angle
⊢ ↑(arg (↑r * (↑(Angle.cos θ) + ↑(Angle.sin θ) * I))) = θ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
| induction' θ using Real.Angle.induction_on with θ | theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.470_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h
r : ℝ
hr : 0 < r
θ : ℝ
⊢ ↑(arg (↑r * (↑(Angle.cos ↑θ) + ↑(Angle.sin ↑θ) * I))) = ↑θ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
| rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] | theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.470_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h
r : ℝ
hr : 0 < r
θ : ℝ
⊢ ∃ k, arg (↑r * (↑(Real.cos θ) + ↑(Real.sin θ) * I)) - θ = 2 * π * ↑k | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
| use ⌊(π - θ) / (2 * π)⌋ | theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.470_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h
r : ℝ
hr : 0 < r
θ : ℝ
⊢ arg (↑r * (↑(Real.cos θ) + ↑(Real.sin θ) * I)) - θ = 2 * π * ↑⌊(π - θ) / (2 * π)⌋ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
| exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ | theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.470_0.CflASCTDE9UCom5 | theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
θ : Angle
⊢ ↑(arg (↑(Angle.cos θ) + ↑(Angle.sin θ) * I)) = θ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
| rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] | theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.479_0.CflASCTDE9UCom5 | theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ ↑(arg (x * y)) = ↑(arg x) + ↑(arg y) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
| convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3 | theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.485_0.CflASCTDE9UCom5 | theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h.e'_2.h.e'_1.h.e'_1
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ x * y = ↑(abs x * abs y) * (↑(Angle.cos (↑(arg x) + ↑(arg y))) + ↑(Angle.sin (↑(arg x) + ↑(arg y))) * I) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
| simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] | theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.485_0.CflASCTDE9UCom5 | theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h.e'_2.h.e'_1.h.e'_1
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ x * y = ↑(abs x) * ↑(abs y) * (cexp (↑(arg x) * I) * cexp (↑(arg y) * I)) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
| rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I] | theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.485_0.CflASCTDE9UCom5 | theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ ↑(arg (x / y)) = ↑(arg x) - ↑(arg y) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
| rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] | theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.496_0.CflASCTDE9UCom5 | theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ Angle.toReal ↑(arg z) = arg z | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
| rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] | @[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.501_0.CflASCTDE9UCom5 | @[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ arg z ∈ Set.Ioc (-π) π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
| exact arg_mem_Ioc _ | @[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.501_0.CflASCTDE9UCom5 | @[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
θ : Angle
⊢ ↑(arg z) = θ ↔ arg z = Angle.toReal θ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
| rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] | theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.507_0.CflASCTDE9UCom5 | theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x y : ℂ
⊢ ↑(arg x) = ↑(arg y) ↔ arg x = arg y | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
| simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] | @[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.512_0.CflASCTDE9UCom5 | @[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x y : ℂ
hx₀ : x ≠ 0
hy₀ : y ≠ 0
⊢ arg (x * y) = arg x + arg y ↔ arg x + arg y ∈ Set.Ioc (-π) π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
| rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] | lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.517_0.CflASCTDE9UCom5 | lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z : ℂ
hx_re : x.re < 0
hx_im : 0 < x.im
⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / abs x) + π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
| suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im | theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.532_0.CflASCTDE9UCom5 | theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z : ℂ
hx_re : x.re < 0
hx_im : 0 < x.im
h_forall_nhds : ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ 0 < y.im
⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / abs x) + π
case h_forall_nhds x z : ℂ hx_re : x.re < 0 hx_im : 0 < x.im ⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ 0 < y.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
| exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le | theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.532_0.CflASCTDE9UCom5 | theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h_forall_nhds
x z : ℂ
hx_re : x.re < 0
hx_im : 0 < x.im
⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ 0 < y.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
| refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) | theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.532_0.CflASCTDE9UCom5 | theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h_forall_nhds
x z : ℂ
hx_re : x.re < 0
hx_im : 0 < x.im
⊢ IsOpen fun y => y.re < 0 ∧ 0 < y.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
| exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) | theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.532_0.CflASCTDE9UCom5 | theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z : ℂ
hx_re : x.re < 0
hx_im : x.im < 0
⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
| suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 | theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.541_0.CflASCTDE9UCom5 | theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z : ℂ
hx_re : x.re < 0
hx_im : x.im < 0
h_forall_nhds : ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ y.im < 0
⊢ arg =ᶠ[𝓝 x] fun x => arcsin ((-x).im / abs x) - π
case h_forall_nhds x z : ℂ hx_re : x.re < 0 hx_im : x.im < 0 ⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ y.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
| exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 | theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.541_0.CflASCTDE9UCom5 | theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h_forall_nhds
x z : ℂ
hx_re : x.re < 0
hx_im : x.im < 0
⊢ ∀ᶠ (y : ℂ) in 𝓝 x, y.re < 0 ∧ y.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
| refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) | theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.541_0.CflASCTDE9UCom5 | theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h_forall_nhds
x z : ℂ
hx_re : x.re < 0
hx_im : x.im < 0
⊢ IsOpen fun y => y.re < 0 ∧ y.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
| exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) | theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.541_0.CflASCTDE9UCom5 | theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ ContinuousAt arg x | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
| have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.558_0.CflASCTDE9UCom5 | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ abs x ≠ 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
| rw [abs.ne_zero_iff] | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.558_0.CflASCTDE9UCom5 | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z : ℂ
h : 0 < x.re ∨ x.im ≠ 0
⊢ x ≠ 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
| rintro rfl | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.558_0.CflASCTDE9UCom5 | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
h : 0 < 0.re ∨ 0.im ≠ 0
⊢ False | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
| simp at h | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.558_0.CflASCTDE9UCom5 | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z : ℂ
h : 0 < x.re ∨ x.im ≠ 0
h₀ : abs x ≠ 0
⊢ ContinuousAt arg x | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
| rw [← lt_or_lt_iff_ne] at h | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.558_0.CflASCTDE9UCom5 | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z : ℂ
h : 0 < x.re ∨ x.im < 0 ∨ 0 < x.im
h₀ : abs x ≠ 0
⊢ ContinuousAt arg x | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
| rcases h with (hx_re | hx_im | hx_im) | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.558_0.CflASCTDE9UCom5 | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl
x z : ℂ
h₀ : abs x ≠ 0
hx_re : 0 < x.re
⊢ ContinuousAt arg x
case inr.inl
x z : ℂ
h₀ : abs x ≠ 0
hx_im : x.im < 0
⊢ ContinuousAt arg x
case inr.inr x z : ℂ h₀ : abs x ≠ 0 hx_im : 0 < x.im ⊢ ContinuousAt arg x | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
| exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm] | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.558_0.CflASCTDE9UCom5 | theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ Tendsto arg (𝓝[{z | z.im < 0}] z) (𝓝 (-π)) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
| suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.576_0.CflASCTDE9UCom5 | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
H : Tendsto (fun x => arcsin ((-x).im / abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
⊢ Tendsto arg (𝓝[{z | z.im < 0}] z) (𝓝 (-π)) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· | refine' H.congr' _ | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.576_0.CflASCTDE9UCom5 | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
H : Tendsto (fun x => arcsin ((-x).im / abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
⊢ (fun x => arcsin ((-x).im / abs x) - π) =ᶠ[𝓝[{z | z.im < 0}] z] arg | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
| have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.576_0.CflASCTDE9UCom5 | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
H : Tendsto (fun x => arcsin ((-x).im / abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0
⊢ (fun x => arcsin ((-x).im / abs x) - π) =ᶠ[𝓝[{z | z.im < 0}] z] arg | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
| filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.576_0.CflASCTDE9UCom5 | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h
x z✝ z : ℂ
hre✝ : z.re < 0
him✝ : z.im = 0
H : Tendsto (fun x => arcsin ((-x).im / abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π))
this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0
a✝ : ℂ
him : a✝.im < 0
hre : a✝.re < 0
⊢ arcsin ((-a✝).im / abs a✝) - π = arg a✝ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
| rw [arg, if_neg hre.not_le, if_neg him.not_le] | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.576_0.CflASCTDE9UCom5 | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case H
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ Tendsto (fun x => arcsin ((-x).im / abs x) - π) (𝓝[{z | z.im < 0}] z) (𝓝 (-π)) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
| convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1 | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.576_0.CflASCTDE9UCom5 | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h.e'_5
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ 𝓝 (-π) = 𝓝 ((arcsin ∘ (im ∘ Neg.neg / ⇑abs)) z - π) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· | simp [him] | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.576_0.CflASCTDE9UCom5 | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case H
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ abs z ≠ 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· simp [him]
· | lift z to ℝ using him | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· simp [him]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.576_0.CflASCTDE9UCom5 | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case H.intro
x z✝ : ℂ
z : ℝ
hre : (↑z).re < 0
⊢ abs ↑z ≠ 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· simp [him]
· lift z to ℝ using him
| simpa using hre.ne | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· simp [him]
· lift z to ℝ using him
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.576_0.CflASCTDE9UCom5 | theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ ContinuousWithinAt arg {z | 0 ≤ z.im} z | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· simp [him]
· lift z to ℝ using him
simpa using hre.ne
#align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
| have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_pos him] | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.597_0.CflASCTDE9UCom5 | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
⊢ arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / abs x) + π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· simp [him]
· lift z to ℝ using him
simpa using hre.ne
#align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
| have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.597_0.CflASCTDE9UCom5 | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0
⊢ arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / abs x) + π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· simp [him]
· lift z to ℝ using him
simpa using hre.ne
#align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
| filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.597_0.CflASCTDE9UCom5 | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case h
x z✝ z : ℂ
hre✝ : z.re < 0
him✝ : z.im = 0
this : ∀ᶠ (x : ℂ) in 𝓝 z, x.re < 0
a✝ : ℂ
him : 0 ≤ a✝.im
hre : a✝.re < 0
⊢ arg a✝ = arcsin ((-a✝).im / abs a✝) + π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· simp [him]
· lift z to ℝ using him
simpa using hre.ne
#align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
| rw [arg, if_neg hre.not_le, if_pos him] | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.597_0.CflASCTDE9UCom5 | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / abs x) + π
⊢ ContinuousWithinAt arg {z | 0 ≤ z.im} z | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· simp [him]
· lift z to ℝ using him
simpa using hre.ne
#align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_pos him]
| refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_pos him]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.597_0.CflASCTDE9UCom5 | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case refine'_1
x z✝ z : ℂ
hre : z.re < 0
him : z.im = 0
this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / abs x) + π
⊢ ContinuousWithinAt (fun x => arcsin ((-x).im / abs x) + π) {z | 0 ≤ z.im} z | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le)
· simp only [him.not_le]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ←
sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him,
abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
#align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff
lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by
rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff]
rcases lt_trichotomy z.re 0 with hre | hre | hre
· simp [hre.ne, hre.not_le, hre.not_lt]
· simp [hre]
· simp [hre, hre.le, hre.ne']
@[simp]
theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by
rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le,
and_not_self_iff, or_false_iff]
#align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff
@[simp]
theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_conj, h]
#align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle
@[simp]
theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by
by_cases h : arg x = π <;> simp [arg_inv, h]
#align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle
theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by
rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)]
simp [neg_div, Real.arccos_neg]
#align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos
theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by
rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)]
simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg]
#align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg
theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} :
arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ←
add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr]
· simp [hr, hi, Real.pi_ne_zero]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero]
· simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos]
#align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff
theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} :
arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hi, arg_neg_eq_arg_add_pi_of_im_neg]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le]
simp [hr.not_lt, ← two_mul, Real.pi_ne_zero]
· simp [hr, hi, Real.pi_ne_zero.symm]
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)]
simp [hr]
· simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ←
add_eq_zero_iff_neg_eq, Real.pi_ne_zero]
#align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff
theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add]
· rw [(ext rfl hi : x = x.re)]
rcases lt_trichotomy x.re 0 with (hr | hr | hr)
· rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ←
Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero]
· exact False.elim (hx (ext hr hi))
· rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr),
Real.Angle.coe_zero, zero_add]
· rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi]
#align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle
theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by
have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by
convert toIocMod_mem_Ioc _ _ θ
ring
convert arg_mul_cos_add_sin_mul_I hr hi using 3
simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod
theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) :
arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod
theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) :
arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor,
zsmul_eq_mul]
ring_nf
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub
theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) :
arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub
theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) :
(arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by
induction' θ using Real.Angle.induction_on with θ
rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub]
use ⌊(π - θ) / (2 * π)⌋
exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle
theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) :
(arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle
theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x * y) : Real.Angle) = arg x + arg y := by
convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy))
(arg x + arg y : Real.Angle) using
3
simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin,
cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul]
rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ←
mul_assoc, abs_mul_exp_arg_mul_I]
#align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle
theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
(arg (x / y) : Real.Angle) = arg x - arg y := by
rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg]
#align complex.arg_div_coe_angle Complex.arg_div_coe_angle
@[simp]
theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by
rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
exact arg_mem_Ioc _
#align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg
theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} :
(arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by
rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal
@[simp]
theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by
simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg]
#align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff
lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
(x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by
rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add,
Real.Angle.toReal_coe_eq_self_iff_mem_Ioc]
alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff
section Continuity
variable {x z : ℂ}
theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) :=
((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le
#align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos
theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im)
#align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos
theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by
suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0
exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2
refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0)
exact
IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero)
#align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg
theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos
#align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos
theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) :=
((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg
#align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg
theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by
have h₀ : abs x ≠ 0 := by
rw [abs.ne_zero_iff]
rintro rfl
simp at h
rw [← lt_or_lt_iff_ne] at h
rcases h with (hx_re | hx_im | hx_im)
exacts [(Real.continuousAt_arcsin.comp
(continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_re_pos hx_re).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr
(arg_eq_nhds_of_im_neg hx_im).symm,
(Real.continuous_arccos.continuousAt.comp
(continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr
(arg_eq_nhds_of_im_pos hx_im).symm]
#align complex.continuous_at_arg Complex.continuousAt_arg
theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0)
(him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by
suffices H :
Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π))
· refine' H.congr' _
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
-- Porting note: need to specify the `nhdsWithin` set
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_neg him.not_le]
convert (Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
-- Porting note: added type hint to assist in goal state below
continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0))
-- Porting note: specify constant precisely to assist in goal below
).sub_const π using 1
· simp [him]
· lift z to ℝ using him
simpa using hre.ne
#align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_pos him]
refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _
· | refine'
(Real.continuousAt_arcsin.comp_continuousWithinAt
((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div
continuous_abs.continuousWithinAt _)).add
tendsto_const_nhds | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by
have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by
have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre)
filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }),
mem_nhdsWithin_of_mem_nhds this] with _ him hre
rw [arg, if_neg hre.not_le, if_pos him]
refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.597_0.CflASCTDE9UCom5 | theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) :
ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |