state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case refine'_1 x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / abs x) + π ⊢ abs z ≠ 0
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds
lift z to ℝ using him
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds
Mathlib.Analysis.SpecialFunctions.Complex.Arg.597_0.CflASCTDE9UCom5
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case refine'_1.intro x z✝ : ℂ z : ℝ hre : (↑z).re < 0 this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] ↑z] fun x => arcsin ((-x).im / abs x) + π ⊢ abs ↑z ≠ 0
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him
simpa using hre.ne
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him
Mathlib.Analysis.SpecialFunctions.Complex.Arg.597_0.CflASCTDE9UCom5
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case refine'_2 x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 this : arg =ᶠ[𝓝[{z | 0 ≤ z.im}] z] fun x => arcsin ((-x).im / abs x) + π ⊢ arg z = arcsin ((-z).im / abs z) + π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne ·
rw [arg, if_neg hre.not_le, if_pos him.ge]
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne ·
Mathlib.Analysis.SpecialFunctions.Complex.Arg.597_0.CflASCTDE9UCom5
theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z
Mathlib_Analysis_SpecialFunctions_Complex_Arg
x z✝ z : ℂ hre : z.re < 0 him : z.im = 0 ⊢ Tendsto arg (𝓝[{z | 0 ≤ z.im}] z) (𝓝 π)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by
simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto
theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by
Mathlib.Analysis.SpecialFunctions.Complex.Arg.615_0.CflASCTDE9UCom5
theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π)
Mathlib_Analysis_SpecialFunctions_Complex_Arg
x z : ℂ h : x ≠ 0 ⊢ ContinuousAt (Angle.coe ∘ arg) x
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by
by_cases hs : 0 < x.re ∨ x.im ≠ 0
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case pos x z : ℂ h : x ≠ 0 hs : 0 < x.re ∨ x.im ≠ 0 ⊢ ContinuousAt (Angle.coe ∘ arg) x
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 ·
exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs)
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 ·
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ContinuousAt (Angle.coe ∘ arg) x
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) ·
rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc]
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) ·
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ContinuousAt (((Angle.coe ∘ arg) ∘ Neg.neg) ∘ Neg.neg) x
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc]
refine' ContinuousAt.comp _ continuous_neg.continuousAt
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc]
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ContinuousAt ((Angle.coe ∘ arg) ∘ Neg.neg) (-x)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt
suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) this : ContinuousAt (Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π) (-x) ⊢ ContinuousAt ((Angle.coe ∘ arg) ∘ Neg.neg) (-x)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by
rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ContinuousAt (Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π) (-x)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this
have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by
rw [Function.update_eq_iff]
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ↑π = ↑(arg 0) + ↑π ∧ ∀ (x : ℂ), x ≠ 0 → ((Angle.coe ∘ arg) ∘ Neg.neg) x = ↑(arg x) + ↑π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff]
exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff]
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ⊢ ↑π = ↑(arg 0) + ↑π
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by
simp
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π ⊢ ContinuousAt (Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π) (-x)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩
rw [ha]
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case neg x z : ℂ h : x ≠ 0 hs : ¬(0 < x.re ∨ x.im ≠ 0) ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π ⊢ ContinuousAt (fun z => ↑(arg z) + ↑π) (-x)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩ rw [ha]
push_neg at hs
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩ rw [ha]
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case neg x z : ℂ h : x ≠ 0 ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π hs : x.re ≤ 0 ∧ x.im = 0 ⊢ ContinuousAt (fun z => ↑(arg z) + ↑π) (-x)
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩ rw [ha] push_neg at hs
refine' (Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg (Or.inl _))).add continuousAt_const
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩ rw [ha] push_neg at hs
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case neg x z : ℂ h : x ≠ 0 ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π hs : x.re ≤ 0 ∧ x.im = 0 ⊢ 0 < (-x).re
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩ rw [ha] push_neg at hs refine' (Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg (Or.inl _))).add continuousAt_const
rw [neg_re, neg_pos]
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩ rw [ha] push_neg at hs refine' (Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg (Or.inl _))).add continuousAt_const
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
case neg x z : ℂ h : x ≠ 0 ha : Function.update ((Angle.coe ∘ arg) ∘ Neg.neg) 0 ↑π = fun z => ↑(arg z) + ↑π hs : x.re ≤ 0 ∧ x.im = 0 ⊢ x.re < 0
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse #align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1" /-! # The argument of a complex number. We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, while `arg 0` defaults to `0` -/ noncomputable section namespace Complex open ComplexConjugate Real Topology open Filter Set /-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`, `arg 0` defaults to `0` -/ noncomputable def arg (x : ℂ) : ℝ := if 0 ≤ x.re then Real.arcsin (x.im / abs x) else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π #align complex.arg Complex.arg theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by unfold arg; split_ifs <;> simp [sub_eq_add_neg, arg, Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2, Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg] #align complex.sin_arg Complex.sin_arg theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by rw [arg] split_ifs with h₁ h₂ · rw [Real.cos_arcsin] field_simp [Real.sqrt_sq, (abs.pos hx).le, *] · rw [Real.cos_add_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] · rw [Real.cos_sub_pi, Real.cos_arcsin] field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs, _root_.abs_of_neg (not_le.1 h₁), *] #align complex.cos_arg Complex.cos_arg @[simp] theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by rcases eq_or_ne x 0 with (rfl | hx) · simp · have : abs x ≠ 0 := abs.ne_zero hx apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)] set_option linter.uppercaseLean3 false in #align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I @[simp] theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by rw [← exp_mul_I, abs_mul_exp_arg_mul_I] set_option linter.uppercaseLean3 false in #align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I @[simp] lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x) @[simp] lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x) theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by refine' ⟨fun hz => ⟨arg z, _⟩, _⟩ · calc exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul] _ = z := abs_mul_exp_arg_mul_I z · rintro ⟨θ, rfl⟩ exact Complex.abs_exp_ofReal_mul_I θ #align complex.abs_eq_one_iff Complex.abs_eq_one_iff @[simp] theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by ext x simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range] set_option linter.uppercaseLean3 false in #align complex.range_exp_mul_I Complex.range_exp_mul_I theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (r * (cos θ + sin θ * I)) = θ := by simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one] simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ← mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr] by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2) · rw [if_pos] exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁] · rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁ cases' h₁ with h₁ h₁ · replace hθ := hθ.1 have hcos : Real.cos θ < 0 := by rw [← neg_pos, ← Real.cos_add_pi] refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith; linarith; exact hsin.not_le; exact hcos.not_le] · replace hθ := hθ.2 have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith) have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩ rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith; linarith; exact hsin; exact hcos.not_le] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I @[simp] theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl] #align complex.arg_zero Complex.arg_zero theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂] #align complex.ext_abs_arg Complex.ext_abs_arg theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y := ⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩ #align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by have hπ : 0 < π := Real.pi_pos rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le] rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩ rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N] have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN push_cast at this rwa [this] #align complex.arg_mem_Ioc Complex.arg_mem_Ioc @[simp] theorem range_arg : Set.range arg = Set.Ioc (-π) π := (Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩ #align complex.range_arg Complex.range_arg theorem arg_le_pi (x : ℂ) : arg x ≤ π := (arg_mem_Ioc x).2 #align complex.arg_le_pi Complex.arg_le_pi theorem neg_pi_lt_arg (x : ℂ) : -π < arg x := (arg_mem_Ioc x).1 #align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π := abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩ #align complex.abs_arg_le_pi Complex.abs_arg_le_pi @[simp] theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by rcases eq_or_ne z 0 with (rfl | h₀); · simp calc 0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) := ⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by contrapose! intro h exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩ _ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] #align complex.arg_nonneg_iff Complex.arg_nonneg_iff @[simp] theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 := lt_iff_lt_of_le_iff_le arg_nonneg_iff #align complex.arg_neg_iff Complex.arg_neg_iff theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero] conv_lhs => rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul, arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] #align complex.arg_real_mul Complex.arg_real_mul theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x := mul_comm x r ▸ arg_real_mul x hr theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs, div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] rw [← ofReal_div, arg_real_mul] exact div_pos (abs.pos hy) (abs.pos hx) #align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff @[simp] theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one] #align complex.arg_one Complex.arg_one @[simp] theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] #align complex.arg_neg_one Complex.arg_neg_one @[simp] theorem arg_I : arg I = π / 2 := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_I Complex.arg_I @[simp] theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl] set_option linter.uppercaseLean3 false in #align complex.arg_neg_I Complex.arg_neg_I @[simp] theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by by_cases h : x = 0 · simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] #align complex.tan_arg Complex.tan_arg theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx] #align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by refine' ⟨fun h => _, _⟩ · rw [← abs_mul_cos_add_sin_mul_I z, h] simp [abs.nonneg] · cases' z with x y rintro ⟨h, rfl : y = 0⟩ exact arg_ofReal_of_nonneg h #align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨h : x < 0, rfl : y = 0⟩ rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] simp [← ofReal_def] #align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] #align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π := arg_eq_pi_iff.2 ⟨hx, rfl⟩ #align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : 0 < y⟩ rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] #align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero] constructor · intro h rw [← abs_mul_cos_add_sin_mul_I z, h] simp [h₀] · cases' z with x y rintro ⟨rfl : x = 0, hy : y < 0⟩ rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] simp #align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) := if_pos hx #align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) : arg x = Real.arcsin ((-x).im / abs x) + π := by simp only [arg, hx_re.not_le, hx_im, if_true, if_false] #align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) : arg x = Real.arcsin ((-x).im / abs x) - π := by simp only [arg, hx_re.not_le, hx_im.not_le, if_false] #align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) : arg z = Real.arccos (z.re / abs z) := by rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] #align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) := arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl #align complex.arg_of_im_pos Complex.arg_of_im_pos theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] #align complex.arg_of_im_neg Complex.arg_of_im_neg theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg, Real.arcsin_neg] rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;> rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] · simp [hr, hr.not_le, hi] · simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] · simp [hr] · simp [hr] · simp [hr] · simp [hr, hr.le, hi.ne] · simp [hr, hr.le, hr.le.not_lt] · simp [hr, hr.le, hr.le.not_lt] #align complex.arg_conj Complex.arg_conj theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by rw [← arg_conj, inv_def, mul_comm] by_cases hx : x = 0 · simp [hx] · exact arg_real_mul (conj x) (by simp [hx]) #align complex.arg_inv Complex.arg_inv theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him.not_lt] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub, Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ← _root_.abs_of_nonneg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) #align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by rcases le_or_lt 0 (re z) with hre | hre · simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] simp only [hre.not_le, false_or_iff] rcases le_or_lt 0 (im z) with him | him · simp only [him] rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) · simp only [him.not_le] rw [iff_false_iff, not_le, arg_of_re_neg_of_im_neg hre him, sub_lt_iff_lt_add', ← sub_eq_add_neg, sub_half, Real.arcsin_lt_pi_div_two, div_lt_one, neg_im, ← abs_of_neg him, abs_im_lt_abs] exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] #align complex.neg_pi_div_two_le_arg_iff Complex.neg_pi_div_two_le_arg_iff lemma neg_pi_div_two_lt_arg_iff {z : ℂ} : -(π / 2) < arg z ↔ 0 < re z ∨ 0 ≤ im z := by rw [lt_iff_le_and_ne, neg_pi_div_two_le_arg_iff, ne_comm, Ne, arg_eq_neg_pi_div_two_iff] rcases lt_trichotomy z.re 0 with hre | hre | hre · simp [hre.ne, hre.not_le, hre.not_lt] · simp [hre] · simp [hre, hre.le, hre.ne'] @[simp] theorem abs_arg_le_pi_div_two_iff {z : ℂ} : |arg z| ≤ π / 2 ↔ 0 ≤ re z := by rw [abs_le, arg_le_pi_div_two_iff, neg_pi_div_two_le_arg_iff, ← or_and_left, ← not_le, and_not_self_iff, or_false_iff] #align complex.abs_arg_le_pi_div_two_iff Complex.abs_arg_le_pi_div_two_iff @[simp] theorem arg_conj_coe_angle (x : ℂ) : (arg (conj x) : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_conj, h] #align complex.arg_conj_coe_angle Complex.arg_conj_coe_angle @[simp] theorem arg_inv_coe_angle (x : ℂ) : (arg x⁻¹ : Real.Angle) = -arg x := by by_cases h : arg x = π <;> simp [arg_inv, h] #align complex.arg_inv_coe_angle Complex.arg_inv_coe_angle theorem arg_neg_eq_arg_sub_pi_of_im_pos {x : ℂ} (hi : 0 < x.im) : arg (-x) = arg x - π := by rw [arg_of_im_pos hi, arg_of_im_neg (show (-x).im < 0 from Left.neg_neg_iff.2 hi)] simp [neg_div, Real.arccos_neg] #align complex.arg_neg_eq_arg_sub_pi_of_im_pos Complex.arg_neg_eq_arg_sub_pi_of_im_pos theorem arg_neg_eq_arg_add_pi_of_im_neg {x : ℂ} (hi : x.im < 0) : arg (-x) = arg x + π := by rw [arg_of_im_neg hi, arg_of_im_pos (show 0 < (-x).im from Left.neg_pos_iff.2 hi)] simp [neg_div, Real.arccos_neg, add_comm, ← sub_eq_add_neg] #align complex.arg_neg_eq_arg_add_pi_of_im_neg Complex.arg_neg_eq_arg_add_pi_of_im_neg theorem arg_neg_eq_arg_sub_pi_iff {x : ℂ} : arg (-x) = arg x - π ↔ 0 < x.im ∨ x.im = 0 ∧ x.re < 0 := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, hi.ne, hi.not_lt, arg_neg_eq_arg_add_pi_of_im_neg, sub_eq_add_neg, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr] · simp [hr, hi, Real.pi_ne_zero] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr.not_lt, ← add_eq_zero_iff_eq_neg, Real.pi_ne_zero] · simp [hi, arg_neg_eq_arg_sub_pi_of_im_pos] #align complex.arg_neg_eq_arg_sub_pi_iff Complex.arg_neg_eq_arg_sub_pi_iff theorem arg_neg_eq_arg_add_pi_iff {x : ℂ} : arg (-x) = arg x + π ↔ x.im < 0 ∨ x.im = 0 ∧ 0 < x.re := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · simp [hi, arg_neg_eq_arg_add_pi_of_im_neg] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le] simp [hr.not_lt, ← two_mul, Real.pi_ne_zero] · simp [hr, hi, Real.pi_ne_zero.symm] · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr)] simp [hr] · simp [hi, hi.ne.symm, hi.not_lt, arg_neg_eq_arg_sub_pi_of_im_pos, sub_eq_add_neg, ← add_eq_zero_iff_neg_eq, Real.pi_ne_zero] #align complex.arg_neg_eq_arg_add_pi_iff Complex.arg_neg_eq_arg_add_pi_iff theorem arg_neg_coe_angle {x : ℂ} (hx : x ≠ 0) : (arg (-x) : Real.Angle) = arg x + π := by rcases lt_trichotomy x.im 0 with (hi | hi | hi) · rw [arg_neg_eq_arg_add_pi_of_im_neg hi, Real.Angle.coe_add] · rw [(ext rfl hi : x = x.re)] rcases lt_trichotomy x.re 0 with (hr | hr | hr) · rw [arg_ofReal_of_neg hr, ← ofReal_neg, arg_ofReal_of_nonneg (Left.neg_pos_iff.2 hr).le, ← Real.Angle.coe_add, ← two_mul, Real.Angle.coe_two_pi, Real.Angle.coe_zero] · exact False.elim (hx (ext hr hi)) · rw [arg_ofReal_of_nonneg hr.le, ← ofReal_neg, arg_ofReal_of_neg (Left.neg_neg_iff.2 hr), Real.Angle.coe_zero, zero_add] · rw [arg_neg_eq_arg_sub_pi_of_im_pos hi, Real.Angle.coe_sub, Real.Angle.sub_coe_pi_eq_add_coe_pi] #align complex.arg_neg_coe_angle Complex.arg_neg_coe_angle theorem arg_mul_cos_add_sin_mul_I_eq_toIocMod {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) = toIocMod Real.two_pi_pos (-π) θ := by have hi : toIocMod Real.two_pi_pos (-π) θ ∈ Set.Ioc (-π) π := by convert toIocMod_mem_Ioc _ _ θ ring convert arg_mul_cos_add_sin_mul_I hr hi using 3 simp [toIocMod, cos_sub_int_mul_two_pi, sin_sub_int_mul_two_pi] set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_mul_cos_add_sin_mul_I_eq_toIocMod theorem arg_cos_add_sin_mul_I_eq_toIocMod (θ : ℝ) : arg (cos θ + sin θ * I) = toIocMod Real.two_pi_pos (-π) θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_eq_toIocMod zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_eq_to_Ioc_mod Complex.arg_cos_add_sin_mul_I_eq_toIocMod theorem arg_mul_cos_add_sin_mul_I_sub {r : ℝ} (hr : 0 < r) (θ : ℝ) : arg (r * (cos θ + sin θ * I)) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [arg_mul_cos_add_sin_mul_I_eq_toIocMod hr, toIocMod_sub_self, toIocDiv_eq_neg_floor, zsmul_eq_mul] ring_nf set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_sub Complex.arg_mul_cos_add_sin_mul_I_sub theorem arg_cos_add_sin_mul_I_sub (θ : ℝ) : arg (cos θ + sin θ * I) - θ = 2 * π * ⌊(π - θ) / (2 * π)⌋ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_sub zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_sub Complex.arg_cos_add_sin_mul_I_sub theorem arg_mul_cos_add_sin_mul_I_coe_angle {r : ℝ} (hr : 0 < r) (θ : Real.Angle) : (arg (r * (Real.Angle.cos θ + Real.Angle.sin θ * I)) : Real.Angle) = θ := by induction' θ using Real.Angle.induction_on with θ rw [Real.Angle.cos_coe, Real.Angle.sin_coe, Real.Angle.angle_eq_iff_two_pi_dvd_sub] use ⌊(π - θ) / (2 * π)⌋ exact mod_cast arg_mul_cos_add_sin_mul_I_sub hr θ set_option linter.uppercaseLean3 false in #align complex.arg_mul_cos_add_sin_mul_I_coe_angle Complex.arg_mul_cos_add_sin_mul_I_coe_angle theorem arg_cos_add_sin_mul_I_coe_angle (θ : Real.Angle) : (arg (Real.Angle.cos θ + Real.Angle.sin θ * I) : Real.Angle) = θ := by rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I_coe_angle zero_lt_one] set_option linter.uppercaseLean3 false in #align complex.arg_cos_add_sin_mul_I_coe_angle Complex.arg_cos_add_sin_mul_I_coe_angle theorem arg_mul_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x * y) : Real.Angle) = arg x + arg y := by convert arg_mul_cos_add_sin_mul_I_coe_angle (mul_pos (abs.pos hx) (abs.pos hy)) (arg x + arg y : Real.Angle) using 3 simp_rw [← Real.Angle.coe_add, Real.Angle.sin_coe, Real.Angle.cos_coe, ofReal_cos, ofReal_sin, cos_add_sin_I, ofReal_add, add_mul, exp_add, ofReal_mul] rw [mul_assoc, mul_comm (exp _), ← mul_assoc (abs y : ℂ), abs_mul_exp_arg_mul_I, mul_comm y, ← mul_assoc, abs_mul_exp_arg_mul_I] #align complex.arg_mul_coe_angle Complex.arg_mul_coe_angle theorem arg_div_coe_angle {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) : (arg (x / y) : Real.Angle) = arg x - arg y := by rw [div_eq_mul_inv, arg_mul_coe_angle hx (inv_ne_zero hy), arg_inv_coe_angle, sub_eq_add_neg] #align complex.arg_div_coe_angle Complex.arg_div_coe_angle @[simp] theorem arg_coe_angle_toReal_eq_arg (z : ℂ) : (arg z : Real.Angle).toReal = arg z := by rw [Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] exact arg_mem_Ioc _ #align complex.arg_coe_angle_to_real_eq_arg Complex.arg_coe_angle_toReal_eq_arg theorem arg_coe_angle_eq_iff_eq_toReal {z : ℂ} {θ : Real.Angle} : (arg z : Real.Angle) = θ ↔ arg z = θ.toReal := by rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff_eq_to_real Complex.arg_coe_angle_eq_iff_eq_toReal @[simp] theorem arg_coe_angle_eq_iff {x y : ℂ} : (arg x : Real.Angle) = arg y ↔ arg x = arg y := by simp_rw [← Real.Angle.toReal_inj, arg_coe_angle_toReal_eq_arg] #align complex.arg_coe_angle_eq_iff Complex.arg_coe_angle_eq_iff lemma arg_mul_eq_add_arg_iff {x y : ℂ} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) : (x * y).arg = x.arg + y.arg ↔ arg x + arg y ∈ Set.Ioc (-π) π := by rw [← arg_coe_angle_toReal_eq_arg, arg_mul_coe_angle hx₀ hy₀, ← Real.Angle.coe_add, Real.Angle.toReal_coe_eq_self_iff_mem_Ioc] alias ⟨_, arg_mul⟩ := arg_mul_eq_add_arg_iff section Continuity variable {x z : ℂ} theorem arg_eq_nhds_of_re_pos (hx : 0 < x.re) : arg =ᶠ[𝓝 x] fun x => Real.arcsin (x.im / abs x) := ((continuous_re.tendsto _).eventually (lt_mem_nhds hx)).mono fun _ hy => arg_of_re_nonneg hy.le #align complex.arg_eq_nhds_of_re_pos Complex.arg_eq_nhds_of_re_pos theorem arg_eq_nhds_of_re_neg_of_im_pos (hx_re : x.re < 0) (hx_im : 0 < x.im) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) + π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ 0 < y.im exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_nonneg hy.1 hy.2.le refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ 0 < x.im) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_zero continuous_im) #align complex.arg_eq_nhds_of_re_neg_of_im_pos Complex.arg_eq_nhds_of_re_neg_of_im_pos theorem arg_eq_nhds_of_re_neg_of_im_neg (hx_re : x.re < 0) (hx_im : x.im < 0) : arg =ᶠ[𝓝 x] fun x => Real.arcsin ((-x).im / abs x) - π := by suffices h_forall_nhds : ∀ᶠ y : ℂ in 𝓝 x, y.re < 0 ∧ y.im < 0 exact h_forall_nhds.mono fun y hy => arg_of_re_neg_of_im_neg hy.1 hy.2 refine' IsOpen.eventually_mem _ (⟨hx_re, hx_im⟩ : x.re < 0 ∧ x.im < 0) exact IsOpen.and (isOpen_lt continuous_re continuous_zero) (isOpen_lt continuous_im continuous_zero) #align complex.arg_eq_nhds_of_re_neg_of_im_neg Complex.arg_eq_nhds_of_re_neg_of_im_neg theorem arg_eq_nhds_of_im_pos (hz : 0 < im z) : arg =ᶠ[𝓝 z] fun x => Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (lt_mem_nhds hz)).mono fun _ => arg_of_im_pos #align complex.arg_eq_nhds_of_im_pos Complex.arg_eq_nhds_of_im_pos theorem arg_eq_nhds_of_im_neg (hz : im z < 0) : arg =ᶠ[𝓝 z] fun x => -Real.arccos (x.re / abs x) := ((continuous_im.tendsto _).eventually (gt_mem_nhds hz)).mono fun _ => arg_of_im_neg #align complex.arg_eq_nhds_of_im_neg Complex.arg_eq_nhds_of_im_neg theorem continuousAt_arg (h : 0 < x.re ∨ x.im ≠ 0) : ContinuousAt arg x := by have h₀ : abs x ≠ 0 := by rw [abs.ne_zero_iff] rintro rfl simp at h rw [← lt_or_lt_iff_ne] at h rcases h with (hx_re | hx_im | hx_im) exacts [(Real.continuousAt_arcsin.comp (continuous_im.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_re_pos hx_re).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).neg.congr (arg_eq_nhds_of_im_neg hx_im).symm, (Real.continuous_arccos.continuousAt.comp (continuous_re.continuousAt.div continuous_abs.continuousAt h₀)).congr (arg_eq_nhds_of_im_pos hx_im).symm] #align complex.continuous_at_arg Complex.continuousAt_arg theorem tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) := by suffices H : Tendsto (fun x : ℂ => Real.arcsin ((-x).im / abs x) - π) (𝓝[{ z : ℂ | z.im < 0 }] z) (𝓝 (-π)) · refine' H.congr' _ have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) -- Porting note: need to specify the `nhdsWithin` set filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | z.im < 0 }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_neg him.not_le] convert (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div -- Porting note: added type hint to assist in goal state below continuous_abs.continuousWithinAt (s := { z : ℂ | z.im < 0 }) (_ : abs z ≠ 0)) -- Porting note: specify constant precisely to assist in goal below ).sub_const π using 1 · simp [him] · lift z to ℝ using him simpa using hre.ne #align complex.tendsto_arg_nhds_within_im_neg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_neg_of_re_neg_of_im_zero theorem continuousWithinAt_arg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : ContinuousWithinAt arg { z : ℂ | 0 ≤ z.im } z := by have : arg =ᶠ[𝓝[{ z : ℂ | 0 ≤ z.im }] z] fun x => Real.arcsin ((-x).im / abs x) + π := by have : ∀ᶠ x : ℂ in 𝓝 z, x.re < 0 := continuous_re.tendsto z (gt_mem_nhds hre) filter_upwards [self_mem_nhdsWithin (s := { z : ℂ | 0 ≤ z.im }), mem_nhdsWithin_of_mem_nhds this] with _ him hre rw [arg, if_neg hre.not_le, if_pos him] refine' ContinuousWithinAt.congr_of_eventuallyEq _ this _ · refine' (Real.continuousAt_arcsin.comp_continuousWithinAt ((continuous_im.continuousAt.comp_continuousWithinAt continuousWithinAt_neg).div continuous_abs.continuousWithinAt _)).add tendsto_const_nhds lift z to ℝ using him simpa using hre.ne · rw [arg, if_neg hre.not_le, if_pos him.ge] #align complex.continuous_within_at_arg_of_re_neg_of_im_zero Complex.continuousWithinAt_arg_of_re_neg_of_im_zero theorem tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero {z : ℂ} (hre : z.re < 0) (him : z.im = 0) : Tendsto arg (𝓝[{ z : ℂ | 0 ≤ z.im }] z) (𝓝 π) := by simpa only [arg_eq_pi_iff.2 ⟨hre, him⟩] using (continuousWithinAt_arg_of_re_neg_of_im_zero hre him).tendsto #align complex.tendsto_arg_nhds_within_im_nonneg_of_re_neg_of_im_zero Complex.tendsto_arg_nhdsWithin_im_nonneg_of_re_neg_of_im_zero theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩ rw [ha] push_neg at hs refine' (Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg (Or.inl _))).add continuousAt_const rw [neg_re, neg_pos]
exact hs.1.lt_of_ne fun h0 => h (ext_iff.2 ⟨h0, hs.2⟩)
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x := by by_cases hs : 0 < x.re ∨ x.im ≠ 0 · exact Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg hs) · rw [← Function.comp.right_id (((↑) : ℝ → Real.Angle) ∘ arg), (Function.funext_iff.2 fun _ => (neg_neg _).symm : (id : ℂ → ℂ) = Neg.neg ∘ Neg.neg), ← Function.comp.assoc] refine' ContinuousAt.comp _ continuous_neg.continuousAt suffices ContinuousAt (Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π) (-x) by rwa [continuousAt_update_of_ne (neg_ne_zero.2 h)] at this have ha : Function.update (((↑) ∘ arg) ∘ Neg.neg : ℂ → Real.Angle) 0 π = fun z => (arg z : Real.Angle) + π := by rw [Function.update_eq_iff] exact ⟨by simp, fun z hz => arg_neg_coe_angle hz⟩ rw [ha] push_neg at hs refine' (Real.Angle.continuous_coe.continuousAt.comp (continuousAt_arg (Or.inl _))).add continuousAt_const rw [neg_re, neg_pos]
Mathlib.Analysis.SpecialFunctions.Complex.Arg.621_0.CflASCTDE9UCom5
theorem continuousAt_arg_coe_angle (h : x ≠ 0) : ContinuousAt ((↑) ∘ arg : ℂ → Real.Angle) x
Mathlib_Analysis_SpecialFunctions_Complex_Arg
𝕜 : Type u_1 𝕜' : Type u_2 E : Type u_3 inst✝⁴ : NormedField 𝕜 inst✝³ : NormedField 𝕜' inst✝² : SeminormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜' E r : ℝ c : ↑(closedBall 0 1) x : ↑(ball 0 r) ⊢ ‖↑c • ↑x‖ < r
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Heather Macbeth -/ import Mathlib.Analysis.Normed.Field.UnitBall import Mathlib.Analysis.NormedSpace.Basic #align_import analysis.normed_space.ball_action from "leanprover-community/mathlib"@"3339976e2bcae9f1c81e620836d1eb736e3c4700" /-! # Multiplicative actions of/on balls and spheres Let `E` be a normed vector space over a normed field `𝕜`. In this file we define the following multiplicative actions. - The closed unit ball in `𝕜` acts on open balls and closed balls centered at `0` in `E`. - The unit sphere in `𝕜` acts on open balls, closed balls, and spheres centered at `0` in `E`. -/ open Metric Set variable {𝕜 𝕜' E : Type*} [NormedField 𝕜] [NormedField 𝕜'] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] {r : ℝ} section ClosedBall instance mulActionClosedBallBall : MulAction (closedBall (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_ball_zero_iff.2 <| by
simpa only [norm_smul, one_mul] using mul_lt_mul' (mem_closedBall_zero_iff.1 c.2) (mem_ball_zero_iff.1 x.2) (norm_nonneg _) one_pos
instance mulActionClosedBallBall : MulAction (closedBall (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_ball_zero_iff.2 <| by
Mathlib.Analysis.NormedSpace.BallAction.29_0.NWEJH2CyESYnSt3
instance mulActionClosedBallBall : MulAction (closedBall (0 : 𝕜) 1) (ball (0 : E) r) where smul c x
Mathlib_Analysis_NormedSpace_BallAction
𝕜 : Type u_1 𝕜' : Type u_2 E : Type u_3 inst✝⁴ : NormedField 𝕜 inst✝³ : NormedField 𝕜' inst✝² : SeminormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜' E r : ℝ c : ↑(closedBall 0 1) x : ↑(closedBall 0 r) ⊢ ‖↑c • ↑x‖ ≤ r
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Heather Macbeth -/ import Mathlib.Analysis.Normed.Field.UnitBall import Mathlib.Analysis.NormedSpace.Basic #align_import analysis.normed_space.ball_action from "leanprover-community/mathlib"@"3339976e2bcae9f1c81e620836d1eb736e3c4700" /-! # Multiplicative actions of/on balls and spheres Let `E` be a normed vector space over a normed field `𝕜`. In this file we define the following multiplicative actions. - The closed unit ball in `𝕜` acts on open balls and closed balls centered at `0` in `E`. - The unit sphere in `𝕜` acts on open balls, closed balls, and spheres centered at `0` in `E`. -/ open Metric Set variable {𝕜 𝕜' E : Type*} [NormedField 𝕜] [NormedField 𝕜'] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] {r : ℝ} section ClosedBall instance mulActionClosedBallBall : MulAction (closedBall (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_ball_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_lt_mul' (mem_closedBall_zero_iff.1 c.2) (mem_ball_zero_iff.1 x.2) (norm_nonneg _) one_pos⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_ball mulActionClosedBallBall instance continuousSMul_closedBall_ball : ContinuousSMul (closedBall (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_ball continuousSMul_closedBall_ball instance mulActionClosedBallClosedBall : MulAction (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_closedBall_zero_iff.2 <| by
simpa only [norm_smul, one_mul] using mul_le_mul (mem_closedBall_zero_iff.1 c.2) (mem_closedBall_zero_iff.1 x.2) (norm_nonneg _) zero_le_one
instance mulActionClosedBallClosedBall : MulAction (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_closedBall_zero_iff.2 <| by
Mathlib.Analysis.NormedSpace.BallAction.44_0.NWEJH2CyESYnSt3
instance mulActionClosedBallClosedBall : MulAction (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x
Mathlib_Analysis_NormedSpace_BallAction
𝕜 : Type u_1 𝕜' : Type u_2 E : Type u_3 inst✝⁴ : NormedField 𝕜 inst✝³ : NormedField 𝕜' inst✝² : SeminormedAddCommGroup E inst✝¹ : NormedSpace 𝕜 E inst✝ : NormedSpace 𝕜' E r : ℝ c : ↑(sphere 0 1) x : ↑(sphere 0 r) ⊢ ‖↑c • ↑x‖ = r
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Heather Macbeth -/ import Mathlib.Analysis.Normed.Field.UnitBall import Mathlib.Analysis.NormedSpace.Basic #align_import analysis.normed_space.ball_action from "leanprover-community/mathlib"@"3339976e2bcae9f1c81e620836d1eb736e3c4700" /-! # Multiplicative actions of/on balls and spheres Let `E` be a normed vector space over a normed field `𝕜`. In this file we define the following multiplicative actions. - The closed unit ball in `𝕜` acts on open balls and closed balls centered at `0` in `E`. - The unit sphere in `𝕜` acts on open balls, closed balls, and spheres centered at `0` in `E`. -/ open Metric Set variable {𝕜 𝕜' E : Type*} [NormedField 𝕜] [NormedField 𝕜'] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] {r : ℝ} section ClosedBall instance mulActionClosedBallBall : MulAction (closedBall (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_ball_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_lt_mul' (mem_closedBall_zero_iff.1 c.2) (mem_ball_zero_iff.1 x.2) (norm_nonneg _) one_pos⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_ball mulActionClosedBallBall instance continuousSMul_closedBall_ball : ContinuousSMul (closedBall (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_ball continuousSMul_closedBall_ball instance mulActionClosedBallClosedBall : MulAction (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_closedBall_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_le_mul (mem_closedBall_zero_iff.1 c.2) (mem_closedBall_zero_iff.1 x.2) (norm_nonneg _) zero_le_one⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_closed_ball mulActionClosedBallClosedBall instance continuousSMul_closedBall_closedBall : ContinuousSMul (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_closed_ball continuousSMul_closedBall_closedBall end ClosedBall section Sphere instance mulActionSphereBall : MulAction (sphere (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := inclusion sphere_subset_closedBall c • x one_smul _ := Subtype.ext <| one_smul _ _ mul_smul _ _ _ := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_ball mulActionSphereBall instance continuousSMul_sphere_ball : ContinuousSMul (sphere (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_ball continuousSMul_sphere_ball instance mulActionSphereClosedBall : MulAction (sphere (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := inclusion sphere_subset_closedBall c • x one_smul _ := Subtype.ext <| one_smul _ _ mul_smul _ _ _ := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_closed_ball mulActionSphereClosedBall instance continuousSMul_sphere_closedBall : ContinuousSMul (sphere (0 : 𝕜) 1) (closedBall (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_closed_ball continuousSMul_sphere_closedBall instance mulActionSphereSphere : MulAction (sphere (0 : 𝕜) 1) (sphere (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_sphere_zero_iff_norm.2 <| by
rw [norm_smul, mem_sphere_zero_iff_norm.1 c.coe_prop, mem_sphere_zero_iff_norm.1 x.coe_prop, one_mul]
instance mulActionSphereSphere : MulAction (sphere (0 : 𝕜) 1) (sphere (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_sphere_zero_iff_norm.2 <| by
Mathlib.Analysis.NormedSpace.BallAction.86_0.NWEJH2CyESYnSt3
instance mulActionSphereSphere : MulAction (sphere (0 : 𝕜) 1) (sphere (0 : E) r) where smul c x
Mathlib_Analysis_NormedSpace_BallAction
𝕜 : Type u_1 𝕜' : Type u_2 E : Type u_3 inst✝⁵ : NormedField 𝕜 inst✝⁴ : NormedField 𝕜' inst✝³ : SeminormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜' E r✝ : ℝ inst✝ : CharZero 𝕜 r : ℝ hr : r ≠ 0 x : ↑(sphere 0 r) h : x = -x ⊢ ↑x = -↑x
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Heather Macbeth -/ import Mathlib.Analysis.Normed.Field.UnitBall import Mathlib.Analysis.NormedSpace.Basic #align_import analysis.normed_space.ball_action from "leanprover-community/mathlib"@"3339976e2bcae9f1c81e620836d1eb736e3c4700" /-! # Multiplicative actions of/on balls and spheres Let `E` be a normed vector space over a normed field `𝕜`. In this file we define the following multiplicative actions. - The closed unit ball in `𝕜` acts on open balls and closed balls centered at `0` in `E`. - The unit sphere in `𝕜` acts on open balls, closed balls, and spheres centered at `0` in `E`. -/ open Metric Set variable {𝕜 𝕜' E : Type*} [NormedField 𝕜] [NormedField 𝕜'] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] {r : ℝ} section ClosedBall instance mulActionClosedBallBall : MulAction (closedBall (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_ball_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_lt_mul' (mem_closedBall_zero_iff.1 c.2) (mem_ball_zero_iff.1 x.2) (norm_nonneg _) one_pos⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_ball mulActionClosedBallBall instance continuousSMul_closedBall_ball : ContinuousSMul (closedBall (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_ball continuousSMul_closedBall_ball instance mulActionClosedBallClosedBall : MulAction (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_closedBall_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_le_mul (mem_closedBall_zero_iff.1 c.2) (mem_closedBall_zero_iff.1 x.2) (norm_nonneg _) zero_le_one⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_closed_ball mulActionClosedBallClosedBall instance continuousSMul_closedBall_closedBall : ContinuousSMul (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_closed_ball continuousSMul_closedBall_closedBall end ClosedBall section Sphere instance mulActionSphereBall : MulAction (sphere (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := inclusion sphere_subset_closedBall c • x one_smul _ := Subtype.ext <| one_smul _ _ mul_smul _ _ _ := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_ball mulActionSphereBall instance continuousSMul_sphere_ball : ContinuousSMul (sphere (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_ball continuousSMul_sphere_ball instance mulActionSphereClosedBall : MulAction (sphere (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := inclusion sphere_subset_closedBall c • x one_smul _ := Subtype.ext <| one_smul _ _ mul_smul _ _ _ := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_closed_ball mulActionSphereClosedBall instance continuousSMul_sphere_closedBall : ContinuousSMul (sphere (0 : 𝕜) 1) (closedBall (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_closed_ball continuousSMul_sphere_closedBall instance mulActionSphereSphere : MulAction (sphere (0 : 𝕜) 1) (sphere (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_sphere_zero_iff_norm.2 <| by rw [norm_smul, mem_sphere_zero_iff_norm.1 c.coe_prop, mem_sphere_zero_iff_norm.1 x.coe_prop, one_mul]⟩ one_smul x := Subtype.ext <| one_smul _ _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_sphere mulActionSphereSphere instance continuousSMul_sphere_sphere : ContinuousSMul (sphere (0 : 𝕜) 1) (sphere (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_sphere continuousSMul_sphere_sphere end Sphere section IsScalarTower variable [NormedAlgebra 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' E] instance isScalarTower_closedBall_closedBall_closedBall : IsScalarTower (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_closed_ball_closed_ball_closed_ball isScalarTower_closedBall_closedBall_closedBall instance isScalarTower_closedBall_closedBall_ball : IsScalarTower (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_closed_ball_closed_ball_ball isScalarTower_closedBall_closedBall_ball instance isScalarTower_sphere_closedBall_closedBall : IsScalarTower (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_closed_ball_closed_ball isScalarTower_sphere_closedBall_closedBall instance isScalarTower_sphere_closedBall_ball : IsScalarTower (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_closed_ball_ball isScalarTower_sphere_closedBall_ball instance isScalarTower_sphere_sphere_closedBall : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_closed_ball isScalarTower_sphere_sphere_closedBall instance isScalarTower_sphere_sphere_ball : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_ball isScalarTower_sphere_sphere_ball instance isScalarTower_sphere_sphere_sphere : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (sphere (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_sphere isScalarTower_sphere_sphere_sphere instance isScalarTower_sphere_ball_ball : IsScalarTower (sphere (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align is_scalar_tower_sphere_ball_ball isScalarTower_sphere_ball_ball instance isScalarTower_closedBall_ball_ball : IsScalarTower (closedBall (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align is_scalar_tower_closed_ball_ball_ball isScalarTower_closedBall_ball_ball end IsScalarTower section SMulCommClass variable [SMulCommClass 𝕜 𝕜' E] instance instSMulCommClass_closedBall_closedBall_closedBall : SMulCommClass (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_closed_ball_closed_ball_closed_ball instSMulCommClass_closedBall_closedBall_closedBall instance instSMulCommClass_closedBall_closedBall_ball : SMulCommClass (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_closed_ball_closed_ball_ball instSMulCommClass_closedBall_closedBall_ball instance instSMulCommClass_sphere_closedBall_closedBall : SMulCommClass (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_closed_ball_closed_ball instSMulCommClass_sphere_closedBall_closedBall instance instSMulCommClass_sphere_closedBall_ball : SMulCommClass (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_closed_ball_ball instSMulCommClass_sphere_closedBall_ball instance instSMulCommClass_sphere_ball_ball [NormedAlgebra 𝕜 𝕜'] : SMulCommClass (sphere (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align smul_comm_class_sphere_ball_ball instSMulCommClass_sphere_ball_ball instance instSMulCommClass_sphere_sphere_closedBall : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_closed_ball instSMulCommClass_sphere_sphere_closedBall instance instSMulCommClass_sphere_sphere_ball : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_ball instSMulCommClass_sphere_sphere_ball instance instSMulCommClass_sphere_sphere_sphere : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (sphere (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_sphere instSMulCommClass_sphere_sphere_sphere end SMulCommClass variable (𝕜) variable [CharZero 𝕜] theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x := fun h => ne_zero_of_mem_sphere hr x ((self_eq_neg 𝕜 _).mp (by
conv_lhs => rw [h]
theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x := fun h => ne_zero_of_mem_sphere hr x ((self_eq_neg 𝕜 _).mp (by
Mathlib.Analysis.NormedSpace.BallAction.203_0.NWEJH2CyESYnSt3
theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x
Mathlib_Analysis_NormedSpace_BallAction
𝕜 : Type u_1 𝕜' : Type u_2 E : Type u_3 inst✝⁵ : NormedField 𝕜 inst✝⁴ : NormedField 𝕜' inst✝³ : SeminormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜' E r✝ : ℝ inst✝ : CharZero 𝕜 r : ℝ hr : r ≠ 0 x : ↑(sphere 0 r) h : x = -x | ↑x
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Heather Macbeth -/ import Mathlib.Analysis.Normed.Field.UnitBall import Mathlib.Analysis.NormedSpace.Basic #align_import analysis.normed_space.ball_action from "leanprover-community/mathlib"@"3339976e2bcae9f1c81e620836d1eb736e3c4700" /-! # Multiplicative actions of/on balls and spheres Let `E` be a normed vector space over a normed field `𝕜`. In this file we define the following multiplicative actions. - The closed unit ball in `𝕜` acts on open balls and closed balls centered at `0` in `E`. - The unit sphere in `𝕜` acts on open balls, closed balls, and spheres centered at `0` in `E`. -/ open Metric Set variable {𝕜 𝕜' E : Type*} [NormedField 𝕜] [NormedField 𝕜'] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] {r : ℝ} section ClosedBall instance mulActionClosedBallBall : MulAction (closedBall (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_ball_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_lt_mul' (mem_closedBall_zero_iff.1 c.2) (mem_ball_zero_iff.1 x.2) (norm_nonneg _) one_pos⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_ball mulActionClosedBallBall instance continuousSMul_closedBall_ball : ContinuousSMul (closedBall (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_ball continuousSMul_closedBall_ball instance mulActionClosedBallClosedBall : MulAction (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_closedBall_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_le_mul (mem_closedBall_zero_iff.1 c.2) (mem_closedBall_zero_iff.1 x.2) (norm_nonneg _) zero_le_one⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_closed_ball mulActionClosedBallClosedBall instance continuousSMul_closedBall_closedBall : ContinuousSMul (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_closed_ball continuousSMul_closedBall_closedBall end ClosedBall section Sphere instance mulActionSphereBall : MulAction (sphere (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := inclusion sphere_subset_closedBall c • x one_smul _ := Subtype.ext <| one_smul _ _ mul_smul _ _ _ := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_ball mulActionSphereBall instance continuousSMul_sphere_ball : ContinuousSMul (sphere (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_ball continuousSMul_sphere_ball instance mulActionSphereClosedBall : MulAction (sphere (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := inclusion sphere_subset_closedBall c • x one_smul _ := Subtype.ext <| one_smul _ _ mul_smul _ _ _ := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_closed_ball mulActionSphereClosedBall instance continuousSMul_sphere_closedBall : ContinuousSMul (sphere (0 : 𝕜) 1) (closedBall (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_closed_ball continuousSMul_sphere_closedBall instance mulActionSphereSphere : MulAction (sphere (0 : 𝕜) 1) (sphere (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_sphere_zero_iff_norm.2 <| by rw [norm_smul, mem_sphere_zero_iff_norm.1 c.coe_prop, mem_sphere_zero_iff_norm.1 x.coe_prop, one_mul]⟩ one_smul x := Subtype.ext <| one_smul _ _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_sphere mulActionSphereSphere instance continuousSMul_sphere_sphere : ContinuousSMul (sphere (0 : 𝕜) 1) (sphere (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_sphere continuousSMul_sphere_sphere end Sphere section IsScalarTower variable [NormedAlgebra 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' E] instance isScalarTower_closedBall_closedBall_closedBall : IsScalarTower (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_closed_ball_closed_ball_closed_ball isScalarTower_closedBall_closedBall_closedBall instance isScalarTower_closedBall_closedBall_ball : IsScalarTower (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_closed_ball_closed_ball_ball isScalarTower_closedBall_closedBall_ball instance isScalarTower_sphere_closedBall_closedBall : IsScalarTower (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_closed_ball_closed_ball isScalarTower_sphere_closedBall_closedBall instance isScalarTower_sphere_closedBall_ball : IsScalarTower (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_closed_ball_ball isScalarTower_sphere_closedBall_ball instance isScalarTower_sphere_sphere_closedBall : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_closed_ball isScalarTower_sphere_sphere_closedBall instance isScalarTower_sphere_sphere_ball : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_ball isScalarTower_sphere_sphere_ball instance isScalarTower_sphere_sphere_sphere : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (sphere (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_sphere isScalarTower_sphere_sphere_sphere instance isScalarTower_sphere_ball_ball : IsScalarTower (sphere (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align is_scalar_tower_sphere_ball_ball isScalarTower_sphere_ball_ball instance isScalarTower_closedBall_ball_ball : IsScalarTower (closedBall (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align is_scalar_tower_closed_ball_ball_ball isScalarTower_closedBall_ball_ball end IsScalarTower section SMulCommClass variable [SMulCommClass 𝕜 𝕜' E] instance instSMulCommClass_closedBall_closedBall_closedBall : SMulCommClass (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_closed_ball_closed_ball_closed_ball instSMulCommClass_closedBall_closedBall_closedBall instance instSMulCommClass_closedBall_closedBall_ball : SMulCommClass (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_closed_ball_closed_ball_ball instSMulCommClass_closedBall_closedBall_ball instance instSMulCommClass_sphere_closedBall_closedBall : SMulCommClass (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_closed_ball_closed_ball instSMulCommClass_sphere_closedBall_closedBall instance instSMulCommClass_sphere_closedBall_ball : SMulCommClass (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_closed_ball_ball instSMulCommClass_sphere_closedBall_ball instance instSMulCommClass_sphere_ball_ball [NormedAlgebra 𝕜 𝕜'] : SMulCommClass (sphere (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align smul_comm_class_sphere_ball_ball instSMulCommClass_sphere_ball_ball instance instSMulCommClass_sphere_sphere_closedBall : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_closed_ball instSMulCommClass_sphere_sphere_closedBall instance instSMulCommClass_sphere_sphere_ball : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_ball instSMulCommClass_sphere_sphere_ball instance instSMulCommClass_sphere_sphere_sphere : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (sphere (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_sphere instSMulCommClass_sphere_sphere_sphere end SMulCommClass variable (𝕜) variable [CharZero 𝕜] theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x := fun h => ne_zero_of_mem_sphere hr x ((self_eq_neg 𝕜 _).mp (by conv_lhs =>
rw [h]
theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x := fun h => ne_zero_of_mem_sphere hr x ((self_eq_neg 𝕜 _).mp (by conv_lhs =>
Mathlib.Analysis.NormedSpace.BallAction.203_0.NWEJH2CyESYnSt3
theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x
Mathlib_Analysis_NormedSpace_BallAction
𝕜 : Type u_1 𝕜' : Type u_2 E : Type u_3 inst✝⁵ : NormedField 𝕜 inst✝⁴ : NormedField 𝕜' inst✝³ : SeminormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜' E r✝ : ℝ inst✝ : CharZero 𝕜 r : ℝ hr : r ≠ 0 x : ↑(sphere 0 r) h : x = -x | ↑x
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Heather Macbeth -/ import Mathlib.Analysis.Normed.Field.UnitBall import Mathlib.Analysis.NormedSpace.Basic #align_import analysis.normed_space.ball_action from "leanprover-community/mathlib"@"3339976e2bcae9f1c81e620836d1eb736e3c4700" /-! # Multiplicative actions of/on balls and spheres Let `E` be a normed vector space over a normed field `𝕜`. In this file we define the following multiplicative actions. - The closed unit ball in `𝕜` acts on open balls and closed balls centered at `0` in `E`. - The unit sphere in `𝕜` acts on open balls, closed balls, and spheres centered at `0` in `E`. -/ open Metric Set variable {𝕜 𝕜' E : Type*} [NormedField 𝕜] [NormedField 𝕜'] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] {r : ℝ} section ClosedBall instance mulActionClosedBallBall : MulAction (closedBall (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_ball_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_lt_mul' (mem_closedBall_zero_iff.1 c.2) (mem_ball_zero_iff.1 x.2) (norm_nonneg _) one_pos⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_ball mulActionClosedBallBall instance continuousSMul_closedBall_ball : ContinuousSMul (closedBall (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_ball continuousSMul_closedBall_ball instance mulActionClosedBallClosedBall : MulAction (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_closedBall_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_le_mul (mem_closedBall_zero_iff.1 c.2) (mem_closedBall_zero_iff.1 x.2) (norm_nonneg _) zero_le_one⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_closed_ball mulActionClosedBallClosedBall instance continuousSMul_closedBall_closedBall : ContinuousSMul (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_closed_ball continuousSMul_closedBall_closedBall end ClosedBall section Sphere instance mulActionSphereBall : MulAction (sphere (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := inclusion sphere_subset_closedBall c • x one_smul _ := Subtype.ext <| one_smul _ _ mul_smul _ _ _ := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_ball mulActionSphereBall instance continuousSMul_sphere_ball : ContinuousSMul (sphere (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_ball continuousSMul_sphere_ball instance mulActionSphereClosedBall : MulAction (sphere (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := inclusion sphere_subset_closedBall c • x one_smul _ := Subtype.ext <| one_smul _ _ mul_smul _ _ _ := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_closed_ball mulActionSphereClosedBall instance continuousSMul_sphere_closedBall : ContinuousSMul (sphere (0 : 𝕜) 1) (closedBall (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_closed_ball continuousSMul_sphere_closedBall instance mulActionSphereSphere : MulAction (sphere (0 : 𝕜) 1) (sphere (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_sphere_zero_iff_norm.2 <| by rw [norm_smul, mem_sphere_zero_iff_norm.1 c.coe_prop, mem_sphere_zero_iff_norm.1 x.coe_prop, one_mul]⟩ one_smul x := Subtype.ext <| one_smul _ _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_sphere mulActionSphereSphere instance continuousSMul_sphere_sphere : ContinuousSMul (sphere (0 : 𝕜) 1) (sphere (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_sphere continuousSMul_sphere_sphere end Sphere section IsScalarTower variable [NormedAlgebra 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' E] instance isScalarTower_closedBall_closedBall_closedBall : IsScalarTower (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_closed_ball_closed_ball_closed_ball isScalarTower_closedBall_closedBall_closedBall instance isScalarTower_closedBall_closedBall_ball : IsScalarTower (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_closed_ball_closed_ball_ball isScalarTower_closedBall_closedBall_ball instance isScalarTower_sphere_closedBall_closedBall : IsScalarTower (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_closed_ball_closed_ball isScalarTower_sphere_closedBall_closedBall instance isScalarTower_sphere_closedBall_ball : IsScalarTower (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_closed_ball_ball isScalarTower_sphere_closedBall_ball instance isScalarTower_sphere_sphere_closedBall : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_closed_ball isScalarTower_sphere_sphere_closedBall instance isScalarTower_sphere_sphere_ball : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_ball isScalarTower_sphere_sphere_ball instance isScalarTower_sphere_sphere_sphere : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (sphere (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_sphere isScalarTower_sphere_sphere_sphere instance isScalarTower_sphere_ball_ball : IsScalarTower (sphere (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align is_scalar_tower_sphere_ball_ball isScalarTower_sphere_ball_ball instance isScalarTower_closedBall_ball_ball : IsScalarTower (closedBall (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align is_scalar_tower_closed_ball_ball_ball isScalarTower_closedBall_ball_ball end IsScalarTower section SMulCommClass variable [SMulCommClass 𝕜 𝕜' E] instance instSMulCommClass_closedBall_closedBall_closedBall : SMulCommClass (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_closed_ball_closed_ball_closed_ball instSMulCommClass_closedBall_closedBall_closedBall instance instSMulCommClass_closedBall_closedBall_ball : SMulCommClass (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_closed_ball_closed_ball_ball instSMulCommClass_closedBall_closedBall_ball instance instSMulCommClass_sphere_closedBall_closedBall : SMulCommClass (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_closed_ball_closed_ball instSMulCommClass_sphere_closedBall_closedBall instance instSMulCommClass_sphere_closedBall_ball : SMulCommClass (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_closed_ball_ball instSMulCommClass_sphere_closedBall_ball instance instSMulCommClass_sphere_ball_ball [NormedAlgebra 𝕜 𝕜'] : SMulCommClass (sphere (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align smul_comm_class_sphere_ball_ball instSMulCommClass_sphere_ball_ball instance instSMulCommClass_sphere_sphere_closedBall : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_closed_ball instSMulCommClass_sphere_sphere_closedBall instance instSMulCommClass_sphere_sphere_ball : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_ball instSMulCommClass_sphere_sphere_ball instance instSMulCommClass_sphere_sphere_sphere : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (sphere (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_sphere instSMulCommClass_sphere_sphere_sphere end SMulCommClass variable (𝕜) variable [CharZero 𝕜] theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x := fun h => ne_zero_of_mem_sphere hr x ((self_eq_neg 𝕜 _).mp (by conv_lhs =>
rw [h]
theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x := fun h => ne_zero_of_mem_sphere hr x ((self_eq_neg 𝕜 _).mp (by conv_lhs =>
Mathlib.Analysis.NormedSpace.BallAction.203_0.NWEJH2CyESYnSt3
theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x
Mathlib_Analysis_NormedSpace_BallAction
𝕜 : Type u_1 𝕜' : Type u_2 E : Type u_3 inst✝⁵ : NormedField 𝕜 inst✝⁴ : NormedField 𝕜' inst✝³ : SeminormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : NormedSpace 𝕜' E r✝ : ℝ inst✝ : CharZero 𝕜 r : ℝ hr : r ≠ 0 x : ↑(sphere 0 r) h : x = -x | ↑x
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Heather Macbeth -/ import Mathlib.Analysis.Normed.Field.UnitBall import Mathlib.Analysis.NormedSpace.Basic #align_import analysis.normed_space.ball_action from "leanprover-community/mathlib"@"3339976e2bcae9f1c81e620836d1eb736e3c4700" /-! # Multiplicative actions of/on balls and spheres Let `E` be a normed vector space over a normed field `𝕜`. In this file we define the following multiplicative actions. - The closed unit ball in `𝕜` acts on open balls and closed balls centered at `0` in `E`. - The unit sphere in `𝕜` acts on open balls, closed balls, and spheres centered at `0` in `E`. -/ open Metric Set variable {𝕜 𝕜' E : Type*} [NormedField 𝕜] [NormedField 𝕜'] [SeminormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E] {r : ℝ} section ClosedBall instance mulActionClosedBallBall : MulAction (closedBall (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_ball_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_lt_mul' (mem_closedBall_zero_iff.1 c.2) (mem_ball_zero_iff.1 x.2) (norm_nonneg _) one_pos⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_ball mulActionClosedBallBall instance continuousSMul_closedBall_ball : ContinuousSMul (closedBall (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_ball continuousSMul_closedBall_ball instance mulActionClosedBallClosedBall : MulAction (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_closedBall_zero_iff.2 <| by simpa only [norm_smul, one_mul] using mul_le_mul (mem_closedBall_zero_iff.1 c.2) (mem_closedBall_zero_iff.1 x.2) (norm_nonneg _) zero_le_one⟩ one_smul x := Subtype.ext <| one_smul 𝕜 _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_closed_ball_closed_ball mulActionClosedBallClosedBall instance continuousSMul_closedBall_closedBall : ContinuousSMul (closedBall (0 : 𝕜) 1) (closedBall (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_closed_ball_closed_ball continuousSMul_closedBall_closedBall end ClosedBall section Sphere instance mulActionSphereBall : MulAction (sphere (0 : 𝕜) 1) (ball (0 : E) r) where smul c x := inclusion sphere_subset_closedBall c • x one_smul _ := Subtype.ext <| one_smul _ _ mul_smul _ _ _ := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_ball mulActionSphereBall instance continuousSMul_sphere_ball : ContinuousSMul (sphere (0 : 𝕜) 1) (ball (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_ball continuousSMul_sphere_ball instance mulActionSphereClosedBall : MulAction (sphere (0 : 𝕜) 1) (closedBall (0 : E) r) where smul c x := inclusion sphere_subset_closedBall c • x one_smul _ := Subtype.ext <| one_smul _ _ mul_smul _ _ _ := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_closed_ball mulActionSphereClosedBall instance continuousSMul_sphere_closedBall : ContinuousSMul (sphere (0 : 𝕜) 1) (closedBall (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_closed_ball continuousSMul_sphere_closedBall instance mulActionSphereSphere : MulAction (sphere (0 : 𝕜) 1) (sphere (0 : E) r) where smul c x := ⟨(c : 𝕜) • ↑x, mem_sphere_zero_iff_norm.2 <| by rw [norm_smul, mem_sphere_zero_iff_norm.1 c.coe_prop, mem_sphere_zero_iff_norm.1 x.coe_prop, one_mul]⟩ one_smul x := Subtype.ext <| one_smul _ _ mul_smul c₁ c₂ x := Subtype.ext <| mul_smul _ _ _ #align mul_action_sphere_sphere mulActionSphereSphere instance continuousSMul_sphere_sphere : ContinuousSMul (sphere (0 : 𝕜) 1) (sphere (0 : E) r) := ⟨(continuous_subtype_val.fst'.smul continuous_subtype_val.snd').subtype_mk _⟩ #align has_continuous_smul_sphere_sphere continuousSMul_sphere_sphere end Sphere section IsScalarTower variable [NormedAlgebra 𝕜 𝕜'] [IsScalarTower 𝕜 𝕜' E] instance isScalarTower_closedBall_closedBall_closedBall : IsScalarTower (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_closed_ball_closed_ball_closed_ball isScalarTower_closedBall_closedBall_closedBall instance isScalarTower_closedBall_closedBall_ball : IsScalarTower (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_closed_ball_closed_ball_ball isScalarTower_closedBall_closedBall_ball instance isScalarTower_sphere_closedBall_closedBall : IsScalarTower (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_closed_ball_closed_ball isScalarTower_sphere_closedBall_closedBall instance isScalarTower_sphere_closedBall_ball : IsScalarTower (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_closed_ball_ball isScalarTower_sphere_closedBall_ball instance isScalarTower_sphere_sphere_closedBall : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_closed_ball isScalarTower_sphere_sphere_closedBall instance isScalarTower_sphere_sphere_ball : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_ball isScalarTower_sphere_sphere_ball instance isScalarTower_sphere_sphere_sphere : IsScalarTower (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (sphere (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : E)⟩ #align is_scalar_tower_sphere_sphere_sphere isScalarTower_sphere_sphere_sphere instance isScalarTower_sphere_ball_ball : IsScalarTower (sphere (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align is_scalar_tower_sphere_ball_ball isScalarTower_sphere_ball_ball instance isScalarTower_closedBall_ball_ball : IsScalarTower (closedBall (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_assoc (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align is_scalar_tower_closed_ball_ball_ball isScalarTower_closedBall_ball_ball end IsScalarTower section SMulCommClass variable [SMulCommClass 𝕜 𝕜' E] instance instSMulCommClass_closedBall_closedBall_closedBall : SMulCommClass (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_closed_ball_closed_ball_closed_ball instSMulCommClass_closedBall_closedBall_closedBall instance instSMulCommClass_closedBall_closedBall_ball : SMulCommClass (closedBall (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_closed_ball_closed_ball_ball instSMulCommClass_closedBall_closedBall_ball instance instSMulCommClass_sphere_closedBall_closedBall : SMulCommClass (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_closed_ball_closed_ball instSMulCommClass_sphere_closedBall_closedBall instance instSMulCommClass_sphere_closedBall_ball : SMulCommClass (sphere (0 : 𝕜) 1) (closedBall (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_closed_ball_ball instSMulCommClass_sphere_closedBall_ball instance instSMulCommClass_sphere_ball_ball [NormedAlgebra 𝕜 𝕜'] : SMulCommClass (sphere (0 : 𝕜) 1) (ball (0 : 𝕜') 1) (ball (0 : 𝕜') 1) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : 𝕜')⟩ #align smul_comm_class_sphere_ball_ball instSMulCommClass_sphere_ball_ball instance instSMulCommClass_sphere_sphere_closedBall : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (closedBall (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_closed_ball instSMulCommClass_sphere_sphere_closedBall instance instSMulCommClass_sphere_sphere_ball : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (ball (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_ball instSMulCommClass_sphere_sphere_ball instance instSMulCommClass_sphere_sphere_sphere : SMulCommClass (sphere (0 : 𝕜) 1) (sphere (0 : 𝕜') 1) (sphere (0 : E) r) := ⟨fun a b c => Subtype.ext <| smul_comm (a : 𝕜) (b : 𝕜') (c : E)⟩ #align smul_comm_class_sphere_sphere_sphere instSMulCommClass_sphere_sphere_sphere end SMulCommClass variable (𝕜) variable [CharZero 𝕜] theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x := fun h => ne_zero_of_mem_sphere hr x ((self_eq_neg 𝕜 _).mp (by conv_lhs =>
rw [h]
theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x := fun h => ne_zero_of_mem_sphere hr x ((self_eq_neg 𝕜 _).mp (by conv_lhs =>
Mathlib.Analysis.NormedSpace.BallAction.203_0.NWEJH2CyESYnSt3
theorem ne_neg_of_mem_sphere {r : ℝ} (hr : r ≠ 0) (x : sphere (0 : E) r) : x ≠ -x
Mathlib_Analysis_NormedSpace_BallAction
R : Type u_1 S : Type u_2 M : Type u_3 a✝ b : R s : S inst✝³ : SMul R M inst✝² : SMul R S inst✝¹ : SMul S M inst✝ : IsScalarTower R S M a : R ab : IsSMulRegular M (a • s) c d : M cd : ((fun m => a • m) ∘ fun x => s • x) c = ((fun m => a • m) ∘ fun x => s • x) d ⊢ c = d
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by
dsimp only [Function.comp_def] at cd
/-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by
Mathlib.Algebra.Regular.SMul.72_0.jyFiiORgtZ4G1XR
/-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a✝ b : R s : S inst✝³ : SMul R M inst✝² : SMul R S inst✝¹ : SMul S M inst✝ : IsScalarTower R S M a : R ab : IsSMulRegular M (a • s) c d : M cd : a • s • c = a • s • d ⊢ c = d
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd
rw [← smul_assoc, ← smul_assoc] at cd
/-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd
Mathlib.Algebra.Regular.SMul.72_0.jyFiiORgtZ4G1XR
/-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a✝ b : R s : S inst✝³ : SMul R M inst✝² : SMul R S inst✝¹ : SMul S M inst✝ : IsScalarTower R S M a : R ab : IsSMulRegular M (a • s) c d : M cd : (a • s) • c = (a • s) • d ⊢ c = d
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd
exact ab cd
/-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd
Mathlib.Algebra.Regular.SMul.72_0.jyFiiORgtZ4G1XR
/-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ab : IsSMulRegular M (a * b) ⊢ IsSMulRegular M b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by
rw [← smul_eq_mul] at ab
theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by
Mathlib.Algebra.Regular.SMul.102_0.jyFiiORgtZ4G1XR
theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ab : IsSMulRegular M (a • b) ⊢ IsSMulRegular M b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab
exact ab.of_smul _
theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab
Mathlib.Algebra.Regular.SMul.102_0.jyFiiORgtZ4G1XR
theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ⊢ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by
refine' ⟨_, _⟩
/-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by
Mathlib.Algebra.Regular.SMul.114_0.jyFiiORgtZ4G1XR
/-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
case refine'_1 R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ⊢ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) → IsSMulRegular M a ∧ IsSMulRegular M b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ ·
rintro ⟨ab, ba⟩
/-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ ·
Mathlib.Algebra.Regular.SMul.114_0.jyFiiORgtZ4G1XR
/-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
case refine'_1.intro R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ab : IsSMulRegular M (a * b) ba : IsSMulRegular M (b * a) ⊢ IsSMulRegular M a ∧ IsSMulRegular M b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩
refine' ⟨ba.of_mul, ab.of_mul⟩
/-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩
Mathlib.Algebra.Regular.SMul.114_0.jyFiiORgtZ4G1XR
/-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
case refine'_2 R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ⊢ IsSMulRegular M a ∧ IsSMulRegular M b → IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a)
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ ·
rintro ⟨ha, hb⟩
/-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ ·
Mathlib.Algebra.Regular.SMul.114_0.jyFiiORgtZ4G1XR
/-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
case refine'_2.intro R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁵ : SMul R M inst✝⁴ : SMul R S inst✝³ : SMul S M inst✝² : IsScalarTower R S M inst✝¹ : Mul R inst✝ : IsScalarTower R R M ha : IsSMulRegular M a hb : IsSMulRegular M b ⊢ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a)
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩
exact ⟨ha.mul hb, hb.mul ha⟩
/-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩
Mathlib.Algebra.Regular.SMul.114_0.jyFiiORgtZ4G1XR
/-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M a b : M ab : (fun x => 1 • x) a = (fun x => 1 • x) b ⊢ a = b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by
dsimp only [Function.comp_def] at ab
/-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by
Mathlib.Algebra.Regular.SMul.133_0.jyFiiORgtZ4G1XR
/-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R)
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M a b : M ab : 1 • a = 1 • b ⊢ a = b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab
rw [one_smul, one_smul] at ab
/-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab
Mathlib.Algebra.Regular.SMul.133_0.jyFiiORgtZ4G1XR
/-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R)
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M a b : M ab : a = b ⊢ a = b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab
assumption
/-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab
Mathlib.Algebra.Regular.SMul.133_0.jyFiiORgtZ4G1XR
/-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R)
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M h : a * b = 1 ⊢ IsSMulRegular M (?m.10627 h * b)
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by
rw [h]
/-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by
Mathlib.Algebra.Regular.SMul.143_0.jyFiiORgtZ4G1XR
/-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M h : a * b = 1 ⊢ IsSMulRegular M 1
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h]
exact one M
/-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h]
Mathlib.Algebra.Regular.SMul.143_0.jyFiiORgtZ4G1XR
/-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M n : ℕ ra : IsSMulRegular M a ⊢ IsSMulRegular M (a ^ n)
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by
induction' n with n hn
/-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by
Mathlib.Algebra.Regular.SMul.151_0.jyFiiORgtZ4G1XR
/-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n)
Mathlib_Algebra_Regular_SMul
case zero R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M ra : IsSMulRegular M a ⊢ IsSMulRegular M (a ^ Nat.zero)
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn ·
rw [pow_zero]
/-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn ·
Mathlib.Algebra.Regular.SMul.151_0.jyFiiORgtZ4G1XR
/-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n)
Mathlib_Algebra_Regular_SMul
case zero R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M ra : IsSMulRegular M a ⊢ IsSMulRegular M 1
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero];
simp only [one]
/-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero];
Mathlib.Algebra.Regular.SMul.151_0.jyFiiORgtZ4G1XR
/-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n)
Mathlib_Algebra_Regular_SMul
case succ R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M ra : IsSMulRegular M a n : ℕ hn : IsSMulRegular M (a ^ n) ⊢ IsSMulRegular M (a ^ Nat.succ n)
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] ·
rw [pow_succ]
/-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] ·
Mathlib.Algebra.Regular.SMul.151_0.jyFiiORgtZ4G1XR
/-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n)
Mathlib_Algebra_Regular_SMul
case succ R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M ra : IsSMulRegular M a n : ℕ hn : IsSMulRegular M (a ^ n) ⊢ IsSMulRegular M (a * a ^ n)
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ]
exact (ra.smul_iff (a ^ n)).mpr hn
/-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ]
Mathlib.Algebra.Regular.SMul.151_0.jyFiiORgtZ4G1XR
/-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n)
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M n : ℕ n0 : 0 < n ⊢ IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by
refine' ⟨_, pow n⟩
/-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by
Mathlib.Algebra.Regular.SMul.159_0.jyFiiORgtZ4G1XR
/-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M n : ℕ n0 : 0 < n ⊢ IsSMulRegular M (a ^ n) → IsSMulRegular M a
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩
rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul]
/-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩
Mathlib.Algebra.Regular.SMul.159_0.jyFiiORgtZ4G1XR
/-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M n : ℕ n0 : 0 < n ⊢ IsSMulRegular M (a ^ Nat.pred n • a) → IsSMulRegular M a
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul]
exact of_smul _
/-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul]
Mathlib.Algebra.Regular.SMul.159_0.jyFiiORgtZ4G1XR
/-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁴ : Monoid S inst✝³ : SMul R M inst✝² : SMul R S inst✝¹ : MulAction S M inst✝ : IsScalarTower R S M h : a • s = 1 ⊢ IsSMulRegular M (a • s)
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by
rw [h]
/-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by
Mathlib.Algebra.Regular.SMul.172_0.jyFiiORgtZ4G1XR
/-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁴ : Monoid S inst✝³ : SMul R M inst✝² : SMul R S inst✝¹ : MulAction S M inst✝ : IsScalarTower R S M h : a • s = 1 ⊢ IsSMulRegular M 1
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h]
exact one M
/-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h]
Mathlib.Algebra.Regular.SMul.172_0.jyFiiORgtZ4G1XR
/-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M h : IsSMulRegular M 0 a b : M ⊢ (fun x => 0 • x) a = (fun x => 0 • x) b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by
dsimp only [Function.comp_def]
/-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by
Mathlib.Algebra.Regular.SMul.187_0.jyFiiORgtZ4G1XR
/-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M h : IsSMulRegular M 0 a b : M ⊢ 0 • a = 0 • b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def];
repeat' rw [MulActionWithZero.zero_smul]
/-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def];
Mathlib.Algebra.Regular.SMul.187_0.jyFiiORgtZ4G1XR
/-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M h : IsSMulRegular M 0 a b : M ⊢ 0 • a = 0 • b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat'
rw [MulActionWithZero.zero_smul]
/-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat'
Mathlib.Algebra.Regular.SMul.187_0.jyFiiORgtZ4G1XR
/-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a✝ b✝ : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M h : IsSMulRegular M 0 a b : M ⊢ 0 = 0 • b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat'
rw [MulActionWithZero.zero_smul]
/-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat'
Mathlib.Algebra.Regular.SMul.187_0.jyFiiORgtZ4G1XR
/-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M ⊢ ¬IsSMulRegular M 0 ↔ Nontrivial M
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by
rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff]
/-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by
Mathlib.Algebra.Regular.SMul.197_0.jyFiiORgtZ4G1XR
/-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M ⊢ (¬∃ x y, x ≠ y) ↔ ∀ (x y : M), x = y
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff]
push_neg
/-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff]
Mathlib.Algebra.Regular.SMul.197_0.jyFiiORgtZ4G1XR
/-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝⁶ : MonoidWithZero R inst✝⁵ : MonoidWithZero S inst✝⁴ : Zero M inst✝³ : MulActionWithZero R M inst✝² : MulActionWithZero R S inst✝¹ : MulActionWithZero S M inst✝ : IsScalarTower R S M ⊢ (∀ (x y : M), x = y) ↔ ∀ (x y : M), x = y
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg
exact Iff.rfl
/-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg
Mathlib.Algebra.Regular.SMul.197_0.jyFiiORgtZ4G1XR
/-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝² : CommSemigroup R inst✝¹ : SMul R M inst✝ : IsScalarTower R R M ⊢ IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg exact Iff.rfl #align is_smul_regular.not_zero_iff IsSMulRegular.not_zero_iff /-- The element `0` is `M`-regular when `M` is trivial. -/ theorem zero [sM : Subsingleton M] : IsSMulRegular M (0 : R) := zero_iff_subsingleton.mpr sM #align is_smul_regular.zero IsSMulRegular.zero /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero [nM : Nontrivial M] : ¬IsSMulRegular M (0 : R) := not_zero_iff.mpr nM #align is_smul_regular.not_zero IsSMulRegular.not_zero end MonoidWithZero section CommSemigroup variable [CommSemigroup R] [SMul R M] [IsScalarTower R R M] /-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by
rw [← mul_and_mul_iff]
/-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by
Mathlib.Algebra.Regular.SMul.220_0.jyFiiORgtZ4G1XR
/-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝² : CommSemigroup R inst✝¹ : SMul R M inst✝ : IsScalarTower R R M ⊢ IsSMulRegular M (a * b) ↔ IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a)
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg exact Iff.rfl #align is_smul_regular.not_zero_iff IsSMulRegular.not_zero_iff /-- The element `0` is `M`-regular when `M` is trivial. -/ theorem zero [sM : Subsingleton M] : IsSMulRegular M (0 : R) := zero_iff_subsingleton.mpr sM #align is_smul_regular.zero IsSMulRegular.zero /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero [nM : Nontrivial M] : ¬IsSMulRegular M (0 : R) := not_zero_iff.mpr nM #align is_smul_regular.not_zero IsSMulRegular.not_zero end MonoidWithZero section CommSemigroup variable [CommSemigroup R] [SMul R M] [IsScalarTower R R M] /-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by rw [← mul_and_mul_iff]
exact ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩
/-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by rw [← mul_and_mul_iff]
Mathlib.Algebra.Regular.SMul.220_0.jyFiiORgtZ4G1XR
/-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝² : CommSemigroup R inst✝¹ : SMul R M inst✝ : IsScalarTower R R M ab : IsSMulRegular M (a * b) ⊢ IsSMulRegular M (b * a)
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg exact Iff.rfl #align is_smul_regular.not_zero_iff IsSMulRegular.not_zero_iff /-- The element `0` is `M`-regular when `M` is trivial. -/ theorem zero [sM : Subsingleton M] : IsSMulRegular M (0 : R) := zero_iff_subsingleton.mpr sM #align is_smul_regular.zero IsSMulRegular.zero /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero [nM : Nontrivial M] : ¬IsSMulRegular M (0 : R) := not_zero_iff.mpr nM #align is_smul_regular.not_zero IsSMulRegular.not_zero end MonoidWithZero section CommSemigroup variable [CommSemigroup R] [SMul R M] [IsScalarTower R R M] /-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by rw [← mul_and_mul_iff] exact ⟨fun ab => ⟨ab, by
rwa [mul_comm]
/-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by rw [← mul_and_mul_iff] exact ⟨fun ab => ⟨ab, by
Mathlib.Algebra.Regular.SMul.220_0.jyFiiORgtZ4G1XR
/-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S G : Type u_4 inst✝¹ : Group G inst✝ : MulAction G R g : G ⊢ IsSMulRegular R g
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg exact Iff.rfl #align is_smul_regular.not_zero_iff IsSMulRegular.not_zero_iff /-- The element `0` is `M`-regular when `M` is trivial. -/ theorem zero [sM : Subsingleton M] : IsSMulRegular M (0 : R) := zero_iff_subsingleton.mpr sM #align is_smul_regular.zero IsSMulRegular.zero /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero [nM : Nontrivial M] : ¬IsSMulRegular M (0 : R) := not_zero_iff.mpr nM #align is_smul_regular.not_zero IsSMulRegular.not_zero end MonoidWithZero section CommSemigroup variable [CommSemigroup R] [SMul R M] [IsScalarTower R R M] /-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by rw [← mul_and_mul_iff] exact ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩ #align is_smul_regular.mul_iff IsSMulRegular.mul_iff end CommSemigroup end IsSMulRegular section Group variable {G : Type*} [Group G] /-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g := by
intro x y h
/-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g := by
Mathlib.Algebra.Regular.SMul.234_0.jyFiiORgtZ4G1XR
/-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S G : Type u_4 inst✝¹ : Group G inst✝ : MulAction G R g : G x y : R h : (fun x => g • x) x = (fun x => g • x) y ⊢ x = y
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg exact Iff.rfl #align is_smul_regular.not_zero_iff IsSMulRegular.not_zero_iff /-- The element `0` is `M`-regular when `M` is trivial. -/ theorem zero [sM : Subsingleton M] : IsSMulRegular M (0 : R) := zero_iff_subsingleton.mpr sM #align is_smul_regular.zero IsSMulRegular.zero /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero [nM : Nontrivial M] : ¬IsSMulRegular M (0 : R) := not_zero_iff.mpr nM #align is_smul_regular.not_zero IsSMulRegular.not_zero end MonoidWithZero section CommSemigroup variable [CommSemigroup R] [SMul R M] [IsScalarTower R R M] /-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by rw [← mul_and_mul_iff] exact ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩ #align is_smul_regular.mul_iff IsSMulRegular.mul_iff end CommSemigroup end IsSMulRegular section Group variable {G : Type*} [Group G] /-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g := by intro x y h
convert congr_arg (g⁻¹ • ·) h using 1
/-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g := by intro x y h
Mathlib.Algebra.Regular.SMul.234_0.jyFiiORgtZ4G1XR
/-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g
Mathlib_Algebra_Regular_SMul
case h.e'_2 R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S G : Type u_4 inst✝¹ : Group G inst✝ : MulAction G R g : G x y : R h : (fun x => g • x) x = (fun x => g • x) y ⊢ x = g⁻¹ • (fun x => g • x) x
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg exact Iff.rfl #align is_smul_regular.not_zero_iff IsSMulRegular.not_zero_iff /-- The element `0` is `M`-regular when `M` is trivial. -/ theorem zero [sM : Subsingleton M] : IsSMulRegular M (0 : R) := zero_iff_subsingleton.mpr sM #align is_smul_regular.zero IsSMulRegular.zero /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero [nM : Nontrivial M] : ¬IsSMulRegular M (0 : R) := not_zero_iff.mpr nM #align is_smul_regular.not_zero IsSMulRegular.not_zero end MonoidWithZero section CommSemigroup variable [CommSemigroup R] [SMul R M] [IsScalarTower R R M] /-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by rw [← mul_and_mul_iff] exact ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩ #align is_smul_regular.mul_iff IsSMulRegular.mul_iff end CommSemigroup end IsSMulRegular section Group variable {G : Type*} [Group G] /-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g := by intro x y h convert congr_arg (g⁻¹ • ·) h using 1 <;>
simp [← smul_assoc]
/-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g := by intro x y h convert congr_arg (g⁻¹ • ·) h using 1 <;>
Mathlib.Algebra.Regular.SMul.234_0.jyFiiORgtZ4G1XR
/-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g
Mathlib_Algebra_Regular_SMul
case h.e'_3 R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S G : Type u_4 inst✝¹ : Group G inst✝ : MulAction G R g : G x y : R h : (fun x => g • x) x = (fun x => g • x) y ⊢ y = g⁻¹ • (fun x => g • x) y
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg exact Iff.rfl #align is_smul_regular.not_zero_iff IsSMulRegular.not_zero_iff /-- The element `0` is `M`-regular when `M` is trivial. -/ theorem zero [sM : Subsingleton M] : IsSMulRegular M (0 : R) := zero_iff_subsingleton.mpr sM #align is_smul_regular.zero IsSMulRegular.zero /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero [nM : Nontrivial M] : ¬IsSMulRegular M (0 : R) := not_zero_iff.mpr nM #align is_smul_regular.not_zero IsSMulRegular.not_zero end MonoidWithZero section CommSemigroup variable [CommSemigroup R] [SMul R M] [IsScalarTower R R M] /-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by rw [← mul_and_mul_iff] exact ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩ #align is_smul_regular.mul_iff IsSMulRegular.mul_iff end CommSemigroup end IsSMulRegular section Group variable {G : Type*} [Group G] /-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g := by intro x y h convert congr_arg (g⁻¹ • ·) h using 1 <;>
simp [← smul_assoc]
/-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g := by intro x y h convert congr_arg (g⁻¹ • ·) h using 1 <;>
Mathlib.Algebra.Regular.SMul.234_0.jyFiiORgtZ4G1XR
/-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g
Mathlib_Algebra_Regular_SMul
R : Type u_1 S : Type u_2 M : Type u_3 a b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M ua : IsUnit a ⊢ IsSMulRegular M a
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg exact Iff.rfl #align is_smul_regular.not_zero_iff IsSMulRegular.not_zero_iff /-- The element `0` is `M`-regular when `M` is trivial. -/ theorem zero [sM : Subsingleton M] : IsSMulRegular M (0 : R) := zero_iff_subsingleton.mpr sM #align is_smul_regular.zero IsSMulRegular.zero /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero [nM : Nontrivial M] : ¬IsSMulRegular M (0 : R) := not_zero_iff.mpr nM #align is_smul_regular.not_zero IsSMulRegular.not_zero end MonoidWithZero section CommSemigroup variable [CommSemigroup R] [SMul R M] [IsScalarTower R R M] /-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by rw [← mul_and_mul_iff] exact ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩ #align is_smul_regular.mul_iff IsSMulRegular.mul_iff end CommSemigroup end IsSMulRegular section Group variable {G : Type*} [Group G] /-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g := by intro x y h convert congr_arg (g⁻¹ • ·) h using 1 <;> simp [← smul_assoc] #align is_smul_regular_of_group isSMulRegular_of_group end Group section Units variable [Monoid R] [MulAction R M] /-- Any element in `Rˣ` is `M`-regular. -/ theorem Units.isSMulRegular (a : Rˣ) : IsSMulRegular M (a : R) := IsSMulRegular.of_mul_eq_one a.inv_val #align units.is_smul_regular Units.isSMulRegular /-- A unit is `M`-regular. -/ theorem IsUnit.isSMulRegular (ua : IsUnit a) : IsSMulRegular M a := by
rcases ua with ⟨a, rfl⟩
/-- A unit is `M`-regular. -/ theorem IsUnit.isSMulRegular (ua : IsUnit a) : IsSMulRegular M a := by
Mathlib.Algebra.Regular.SMul.252_0.jyFiiORgtZ4G1XR
/-- A unit is `M`-regular. -/ theorem IsUnit.isSMulRegular (ua : IsUnit a) : IsSMulRegular M a
Mathlib_Algebra_Regular_SMul
case intro R : Type u_1 S : Type u_2 M : Type u_3 b : R s : S inst✝¹ : Monoid R inst✝ : MulAction R M a : Rˣ ⊢ IsSMulRegular M ↑a
/- Copyright (c) 2021 Damiano Testa. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Damiano Testa -/ import Mathlib.Algebra.SMulWithZero import Mathlib.Algebra.Regular.Basic #align_import algebra.regular.smul from "leanprover-community/mathlib"@"550b58538991c8977703fdeb7c9d51a5aa27df11" /-! # Action of regular elements on a module We introduce `M`-regular elements, in the context of an `R`-module `M`. The corresponding predicate is called `IsSMulRegular`. There are very limited typeclass assumptions on `R` and `M`, but the "mathematical" case of interest is a commutative ring `R` acting on a module `M`. Since the properties are "multiplicative", there is no actual requirement of having an addition, but there is a zero in both `R` and `M`. SMultiplications involving `0` are, of course, all trivial. The defining property is that an element `a ∈ R` is `M`-regular if the smultiplication map `M → M`, defined by `m ↦ a • m`, is injective. This property is the direct generalization to modules of the property `IsLeftRegular` defined in `Algebra/Regular`. Lemma `isLeftRegular_iff` shows that indeed the two notions coincide. -/ variable {R S : Type*} (M : Type*) {a b : R} {s : S} /-- An `M`-regular element is an element `c` such that multiplication on the left by `c` is an injective map `M → M`. -/ def IsSMulRegular [SMul R M] (c : R) := Function.Injective ((c • ·) : M → M) #align is_smul_regular IsSMulRegular theorem IsLeftRegular.isSMulRegular [Mul R] {c : R} (h : IsLeftRegular c) : IsSMulRegular R c := h #align is_left_regular.is_smul_regular IsLeftRegular.isSMulRegular /-- Left-regular multiplication on `R` is equivalent to `R`-regularity of `R` itself. -/ theorem isLeftRegular_iff [Mul R] {a : R} : IsLeftRegular a ↔ IsSMulRegular R a := Iff.rfl #align is_left_regular_iff isLeftRegular_iff theorem IsRightRegular.isSMulRegular [Mul R] {c : R} (h : IsRightRegular c) : IsSMulRegular R (MulOpposite.op c) := h #align is_right_regular.is_smul_regular IsRightRegular.isSMulRegular /-- Right-regular multiplication on `R` is equivalent to `Rᵐᵒᵖ`-regularity of `R` itself. -/ theorem isRightRegular_iff [Mul R] {a : R} : IsRightRegular a ↔ IsSMulRegular R (MulOpposite.op a) := Iff.rfl #align is_right_regular_iff isRightRegular_iff namespace IsSMulRegular variable {M} section SMul variable [SMul R M] [SMul R S] [SMul S M] [IsScalarTower R S M] /-- The product of `M`-regular elements is `M`-regular. -/ theorem smul (ra : IsSMulRegular M a) (rs : IsSMulRegular M s) : IsSMulRegular M (a • s) := fun _ _ ab => rs (ra ((smul_assoc _ _ _).symm.trans (ab.trans (smul_assoc _ _ _)))) #align is_smul_regular.smul IsSMulRegular.smul /-- If an element `b` becomes `M`-regular after multiplying it on the left by an `M`-regular element, then `b` is `M`-regular. -/ theorem of_smul (a : R) (ab : IsSMulRegular M (a • s)) : IsSMulRegular M s := @Function.Injective.of_comp _ _ _ (fun m : M => a • m) _ fun c d cd => by dsimp only [Function.comp_def] at cd rw [← smul_assoc, ← smul_assoc] at cd exact ab cd #align is_smul_regular.of_smul IsSMulRegular.of_smul /-- An element is `M`-regular if and only if multiplying it on the left by an `M`-regular element is `M`-regular. -/ @[simp] theorem smul_iff (b : S) (ha : IsSMulRegular M a) : IsSMulRegular M (a • b) ↔ IsSMulRegular M b := ⟨of_smul _, ha.smul⟩ #align is_smul_regular.smul_iff IsSMulRegular.smul_iff theorem isLeftRegular [Mul R] {a : R} (h : IsSMulRegular R a) : IsLeftRegular a := h #align is_smul_regular.is_left_regular IsSMulRegular.isLeftRegular theorem isRightRegular [Mul R] {a : R} (h : IsSMulRegular R (MulOpposite.op a)) : IsRightRegular a := h #align is_smul_regular.is_right_regular IsSMulRegular.isRightRegular theorem mul [Mul R] [IsScalarTower R R M] (ra : IsSMulRegular M a) (rb : IsSMulRegular M b) : IsSMulRegular M (a * b) := ra.smul rb #align is_smul_regular.mul IsSMulRegular.mul theorem of_mul [Mul R] [IsScalarTower R R M] (ab : IsSMulRegular M (a * b)) : IsSMulRegular M b := by rw [← smul_eq_mul] at ab exact ab.of_smul _ #align is_smul_regular.of_mul IsSMulRegular.of_mul @[simp] theorem mul_iff_right [Mul R] [IsScalarTower R R M] (ha : IsSMulRegular M a) : IsSMulRegular M (a * b) ↔ IsSMulRegular M b := ⟨of_mul, ha.mul⟩ #align is_smul_regular.mul_iff_right IsSMulRegular.mul_iff_right /-- Two elements `a` and `b` are `M`-regular if and only if both products `a * b` and `b * a` are `M`-regular. -/ theorem mul_and_mul_iff [Mul R] [IsScalarTower R R M] : IsSMulRegular M (a * b) ∧ IsSMulRegular M (b * a) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by refine' ⟨_, _⟩ · rintro ⟨ab, ba⟩ refine' ⟨ba.of_mul, ab.of_mul⟩ · rintro ⟨ha, hb⟩ exact ⟨ha.mul hb, hb.mul ha⟩ #align is_smul_regular.mul_and_mul_iff IsSMulRegular.mul_and_mul_iff end SMul section Monoid variable [Monoid R] [MulAction R M] variable (M) /-- One is always `M`-regular. -/ @[simp] theorem one : IsSMulRegular M (1 : R) := fun a b ab => by dsimp only [Function.comp_def] at ab rw [one_smul, one_smul] at ab assumption #align is_smul_regular.one IsSMulRegular.one variable {M} /-- An element of `R` admitting a left inverse is `M`-regular. -/ theorem of_mul_eq_one (h : a * b = 1) : IsSMulRegular M b := of_mul (by rw [h] exact one M) #align is_smul_regular.of_mul_eq_one IsSMulRegular.of_mul_eq_one /-- Any power of an `M`-regular element is `M`-regular. -/ theorem pow (n : ℕ) (ra : IsSMulRegular M a) : IsSMulRegular M (a ^ n) := by induction' n with n hn · rw [pow_zero]; simp only [one] · rw [pow_succ] exact (ra.smul_iff (a ^ n)).mpr hn #align is_smul_regular.pow IsSMulRegular.pow /-- An element `a` is `M`-regular if and only if a positive power of `a` is `M`-regular. -/ theorem pow_iff {n : ℕ} (n0 : 0 < n) : IsSMulRegular M (a ^ n) ↔ IsSMulRegular M a := by refine' ⟨_, pow n⟩ rw [← Nat.succ_pred_eq_of_pos n0, pow_succ', ← smul_eq_mul] exact of_smul _ #align is_smul_regular.pow_iff IsSMulRegular.pow_iff end Monoid section MonoidSMul variable [Monoid S] [SMul R M] [SMul R S] [MulAction S M] [IsScalarTower R S M] /-- An element of `S` admitting a left inverse in `R` is `M`-regular. -/ theorem of_smul_eq_one (h : a • s = 1) : IsSMulRegular M s := of_smul a (by rw [h] exact one M) #align is_smul_regular.of_smul_eq_one IsSMulRegular.of_smul_eq_one end MonoidSMul section MonoidWithZero variable [MonoidWithZero R] [MonoidWithZero S] [Zero M] [MulActionWithZero R M] [MulActionWithZero R S] [MulActionWithZero S M] [IsScalarTower R S M] /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ protected theorem subsingleton (h : IsSMulRegular M (0 : R)) : Subsingleton M := ⟨fun a b => h (by dsimp only [Function.comp_def]; repeat' rw [MulActionWithZero.zero_smul])⟩ #align is_smul_regular.subsingleton IsSMulRegular.subsingleton /-- The element `0` is `M`-regular if and only if `M` is trivial. -/ theorem zero_iff_subsingleton : IsSMulRegular M (0 : R) ↔ Subsingleton M := ⟨fun h => h.subsingleton, fun H a b _ => @Subsingleton.elim _ H a b⟩ #align is_smul_regular.zero_iff_subsingleton IsSMulRegular.zero_iff_subsingleton /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero_iff : ¬IsSMulRegular M (0 : R) ↔ Nontrivial M := by rw [nontrivial_iff, not_iff_comm, zero_iff_subsingleton, subsingleton_iff] push_neg exact Iff.rfl #align is_smul_regular.not_zero_iff IsSMulRegular.not_zero_iff /-- The element `0` is `M`-regular when `M` is trivial. -/ theorem zero [sM : Subsingleton M] : IsSMulRegular M (0 : R) := zero_iff_subsingleton.mpr sM #align is_smul_regular.zero IsSMulRegular.zero /-- The `0` element is not `M`-regular, on a non-trivial module. -/ theorem not_zero [nM : Nontrivial M] : ¬IsSMulRegular M (0 : R) := not_zero_iff.mpr nM #align is_smul_regular.not_zero IsSMulRegular.not_zero end MonoidWithZero section CommSemigroup variable [CommSemigroup R] [SMul R M] [IsScalarTower R R M] /-- A product is `M`-regular if and only if the factors are. -/ theorem mul_iff : IsSMulRegular M (a * b) ↔ IsSMulRegular M a ∧ IsSMulRegular M b := by rw [← mul_and_mul_iff] exact ⟨fun ab => ⟨ab, by rwa [mul_comm]⟩, fun rab => rab.1⟩ #align is_smul_regular.mul_iff IsSMulRegular.mul_iff end CommSemigroup end IsSMulRegular section Group variable {G : Type*} [Group G] /-- An element of a group acting on a Type is regular. This relies on the availability of the inverse given by groups, since there is no `LeftCancelSMul` typeclass. -/ theorem isSMulRegular_of_group [MulAction G R] (g : G) : IsSMulRegular R g := by intro x y h convert congr_arg (g⁻¹ • ·) h using 1 <;> simp [← smul_assoc] #align is_smul_regular_of_group isSMulRegular_of_group end Group section Units variable [Monoid R] [MulAction R M] /-- Any element in `Rˣ` is `M`-regular. -/ theorem Units.isSMulRegular (a : Rˣ) : IsSMulRegular M (a : R) := IsSMulRegular.of_mul_eq_one a.inv_val #align units.is_smul_regular Units.isSMulRegular /-- A unit is `M`-regular. -/ theorem IsUnit.isSMulRegular (ua : IsUnit a) : IsSMulRegular M a := by rcases ua with ⟨a, rfl⟩
exact a.isSMulRegular M
/-- A unit is `M`-regular. -/ theorem IsUnit.isSMulRegular (ua : IsUnit a) : IsSMulRegular M a := by rcases ua with ⟨a, rfl⟩
Mathlib.Algebra.Regular.SMul.252_0.jyFiiORgtZ4G1XR
/-- A unit is `M`-regular. -/ theorem IsUnit.isSMulRegular (ua : IsUnit a) : IsSMulRegular M a
Mathlib_Algebra_Regular_SMul
F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : NonUnitalNonAssocSemiring α inst✝ : NonUnitalNonAssocSemiring β f g : α →ₙ+* β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by
cases f
instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by
Mathlib.Algebra.Ring.Hom.Defs.104_0.KyHvVYrIs9pW9ZQ
instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f
Mathlib_Algebra_Ring_Hom_Defs
case mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : NonUnitalNonAssocSemiring α inst✝ : NonUnitalNonAssocSemiring β g : α →ₙ+* β toMulHom✝ : α →ₙ* β map_zero'✝ : MulHom.toFun toMulHom✝ 0 = 0 map_add'✝ : ∀ (x y : α), MulHom.toFun toMulHom✝ (x + y) = MulHom.toFun toMulHom✝ x + MulHom.toFun toMulHom✝ y h : (fun f => f.toFun) { toMulHom := toMulHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ } = (fun f => f.toFun) g ⊢ { toMulHom := toMulHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ } = g
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f
cases g
instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f
Mathlib.Algebra.Ring.Hom.Defs.104_0.KyHvVYrIs9pW9ZQ
instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f
Mathlib_Algebra_Ring_Hom_Defs
case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : NonUnitalNonAssocSemiring α inst✝ : NonUnitalNonAssocSemiring β toMulHom✝¹ : α →ₙ* β map_zero'✝¹ : MulHom.toFun toMulHom✝¹ 0 = 0 map_add'✝¹ : ∀ (x y : α), MulHom.toFun toMulHom✝¹ (x + y) = MulHom.toFun toMulHom✝¹ x + MulHom.toFun toMulHom✝¹ y toMulHom✝ : α →ₙ* β map_zero'✝ : MulHom.toFun toMulHom✝ 0 = 0 map_add'✝ : ∀ (x y : α), MulHom.toFun toMulHom✝ (x + y) = MulHom.toFun toMulHom✝ x + MulHom.toFun toMulHom✝ y h : (fun f => f.toFun) { toMulHom := toMulHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = (fun f => f.toFun) { toMulHom := toMulHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ } ⊢ { toMulHom := toMulHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = { toMulHom := toMulHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g
congr
instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g
Mathlib.Algebra.Ring.Hom.Defs.104_0.KyHvVYrIs9pW9ZQ
instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f
Mathlib_Algebra_Ring_Hom_Defs
case mk.mk.e_toMulHom F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : NonUnitalNonAssocSemiring α inst✝ : NonUnitalNonAssocSemiring β toMulHom✝¹ : α →ₙ* β map_zero'✝¹ : MulHom.toFun toMulHom✝¹ 0 = 0 map_add'✝¹ : ∀ (x y : α), MulHom.toFun toMulHom✝¹ (x + y) = MulHom.toFun toMulHom✝¹ x + MulHom.toFun toMulHom✝¹ y toMulHom✝ : α →ₙ* β map_zero'✝ : MulHom.toFun toMulHom✝ 0 = 0 map_add'✝ : ∀ (x y : α), MulHom.toFun toMulHom✝ (x + y) = MulHom.toFun toMulHom✝ x + MulHom.toFun toMulHom✝ y h : (fun f => f.toFun) { toMulHom := toMulHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = (fun f => f.toFun) { toMulHom := toMulHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ } ⊢ toMulHom✝¹ = toMulHom✝
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr
apply FunLike.coe_injective'
instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr
Mathlib.Algebra.Ring.Hom.Defs.104_0.KyHvVYrIs9pW9ZQ
instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f
Mathlib_Algebra_Ring_Hom_Defs
case mk.mk.e_toMulHom.a F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝¹ : NonUnitalNonAssocSemiring α inst✝ : NonUnitalNonAssocSemiring β toMulHom✝¹ : α →ₙ* β map_zero'✝¹ : MulHom.toFun toMulHom✝¹ 0 = 0 map_add'✝¹ : ∀ (x y : α), MulHom.toFun toMulHom✝¹ (x + y) = MulHom.toFun toMulHom✝¹ x + MulHom.toFun toMulHom✝¹ y toMulHom✝ : α →ₙ* β map_zero'✝ : MulHom.toFun toMulHom✝ 0 = 0 map_add'✝ : ∀ (x y : α), MulHom.toFun toMulHom✝ (x + y) = MulHom.toFun toMulHom✝ x + MulHom.toFun toMulHom✝ y h : (fun f => f.toFun) { toMulHom := toMulHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = (fun f => f.toFun) { toMulHom := toMulHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ } ⊢ ⇑toMulHom✝¹ = ⇑toMulHom✝
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective'
exact h
instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective'
Mathlib.Algebra.Ring.Hom.Defs.104_0.KyHvVYrIs9pW9ZQ
instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f
Mathlib_Algebra_Ring_Hom_Defs
F : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α✝ inst✝¹ : NonUnitalNonAssocSemiring β α : Type u_5 inst✝ : NonUnitalNonAssocSemiring α ⊢ α →ₙ+* α
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by
refine' { toFun := id.. }
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by
Mathlib.Algebra.Ring.Hom.Defs.199_0.KyHvVYrIs9pW9ZQ
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α
Mathlib_Algebra_Ring_Hom_Defs
case refine'_1 F : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α✝ inst✝¹ : NonUnitalNonAssocSemiring β α : Type u_5 inst✝ : NonUnitalNonAssocSemiring α ⊢ ∀ (x y : α), id (x * y) = id x * id y
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;>
intros
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;>
Mathlib.Algebra.Ring.Hom.Defs.199_0.KyHvVYrIs9pW9ZQ
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α
Mathlib_Algebra_Ring_Hom_Defs
case refine'_2 F : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α✝ inst✝¹ : NonUnitalNonAssocSemiring β α : Type u_5 inst✝ : NonUnitalNonAssocSemiring α ⊢ MulHom.toFun { toFun := id, map_mul' := (_ : ∀ (x y : α), id (x * y) = id x * id y) } 0 = 0
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;>
intros
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;>
Mathlib.Algebra.Ring.Hom.Defs.199_0.KyHvVYrIs9pW9ZQ
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α
Mathlib_Algebra_Ring_Hom_Defs
case refine'_3 F : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α✝ inst✝¹ : NonUnitalNonAssocSemiring β α : Type u_5 inst✝ : NonUnitalNonAssocSemiring α ⊢ ∀ (x y : α), MulHom.toFun { toFun := id, map_mul' := (_ : ∀ (x y : α), id (x * y) = id x * id y) } (x + y) = MulHom.toFun { toFun := id, map_mul' := (_ : ∀ (x y : α), id (x * y) = id x * id y) } x + MulHom.toFun { toFun := id, map_mul' := (_ : ∀ (x y : α), id (x * y) = id x * id y) } y
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;>
intros
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;>
Mathlib.Algebra.Ring.Hom.Defs.199_0.KyHvVYrIs9pW9ZQ
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α
Mathlib_Algebra_Ring_Hom_Defs
case refine'_1 F : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α✝ inst✝¹ : NonUnitalNonAssocSemiring β α : Type u_5 inst✝ : NonUnitalNonAssocSemiring α x✝ y✝ : α ⊢ id (x✝ * y✝) = id x✝ * id y✝
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;>
rfl
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;>
Mathlib.Algebra.Ring.Hom.Defs.199_0.KyHvVYrIs9pW9ZQ
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α
Mathlib_Algebra_Ring_Hom_Defs
case refine'_2 F : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α✝ inst✝¹ : NonUnitalNonAssocSemiring β α : Type u_5 inst✝ : NonUnitalNonAssocSemiring α ⊢ MulHom.toFun { toFun := id, map_mul' := (_ : ∀ (x y : α), id (x * y) = id (x * y)) } 0 = 0
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;>
rfl
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;>
Mathlib.Algebra.Ring.Hom.Defs.199_0.KyHvVYrIs9pW9ZQ
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α
Mathlib_Algebra_Ring_Hom_Defs
case refine'_3 F : Type u_1 α✝ : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α✝ inst✝¹ : NonUnitalNonAssocSemiring β α : Type u_5 inst✝ : NonUnitalNonAssocSemiring α x✝ y✝ : α ⊢ MulHom.toFun { toFun := id, map_mul' := (_ : ∀ (x y : α), id (x * y) = id (x * y)) } (x✝ + y✝) = MulHom.toFun { toFun := id, map_mul' := (_ : ∀ (x y : α), id (x * y) = id (x * y)) } x✝ + MulHom.toFun { toFun := id, map_mul' := (_ : ∀ (x y : α), id (x * y) = id (x * y)) } y✝
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;>
rfl
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;>
Mathlib.Algebra.Ring.Hom.Defs.199_0.KyHvVYrIs9pW9ZQ
/-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α
Mathlib_Algebra_Ring_Hom_Defs
F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α inst✝¹ : NonUnitalNonAssocSemiring β inst✝ : NonUnitalNonAssocSemiring γ g✝ : β →ₙ+* γ f : α →ₙ+* β g : β →ₙ+* γ ⊢ comp g 0 = 0
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by
ext
@[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by
Mathlib.Algebra.Ring.Hom.Defs.272_0.KyHvVYrIs9pW9ZQ
@[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0
Mathlib_Algebra_Ring_Hom_Defs
case a F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α inst✝¹ : NonUnitalNonAssocSemiring β inst✝ : NonUnitalNonAssocSemiring γ g✝ : β →ₙ+* γ f : α →ₙ+* β g : β →ₙ+* γ x✝ : α ⊢ (comp g 0) x✝ = 0 x✝
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext
simp
@[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext
Mathlib.Algebra.Ring.Hom.Defs.272_0.KyHvVYrIs9pW9ZQ
@[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0
Mathlib_Algebra_Ring_Hom_Defs
F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α inst✝¹ : NonUnitalNonAssocSemiring β inst✝ : NonUnitalNonAssocSemiring γ g : β →ₙ+* γ f✝ f : α →ₙ+* β ⊢ comp 0 f = 0
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by
ext
@[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by
Mathlib.Algebra.Ring.Hom.Defs.278_0.KyHvVYrIs9pW9ZQ
@[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0
Mathlib_Algebra_Ring_Hom_Defs
case a F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α inst✝¹ : NonUnitalNonAssocSemiring β inst✝ : NonUnitalNonAssocSemiring γ g : β →ₙ+* γ f✝ f : α →ₙ+* β x✝ : α ⊢ (comp 0 f) x✝ = 0 x✝
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext
rfl
@[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext
Mathlib.Algebra.Ring.Hom.Defs.278_0.KyHvVYrIs9pW9ZQ
@[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0
Mathlib_Algebra_Ring_Hom_Defs
F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonUnitalNonAssocSemiring α inst✝¹ : NonUnitalNonAssocSemiring β inst✝ : NonUnitalNonAssocSemiring γ g✝ : β →ₙ+* γ f : α →ₙ+* β g : β →ₙ+* γ f₁ f₂ : α →ₙ+* β hg : Injective ⇑g h : comp g f₁ = comp g f₂ x : α ⊢ g (f₁ x) = g (f₂ x)
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by
rw [← comp_apply, h, comp_apply]
@[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by
Mathlib.Algebra.Ring.Hom.Defs.328_0.KyHvVYrIs9pW9ZQ
@[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂
Mathlib_Algebra_Ring_Hom_Defs
F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : NonAssocSemiring α inst✝¹ : NonAssocSemiring β inst✝ : RingHomClass F α β f : F a : α ⊢ f (bit1 a) = bit1 (f a)
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by
simp [bit1]
set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by
Mathlib.Algebra.Ring.Hom.Defs.380_0.KyHvVYrIs9pW9ZQ
set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a)
Mathlib_Algebra_Ring_Hom_Defs
F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β f g : α →+* β h : (fun f => f.toFun) f = (fun f => f.toFun) g ⊢ f = g
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by
cases f
instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by
Mathlib.Algebra.Ring.Hom.Defs.416_0.KyHvVYrIs9pW9ZQ
instance instRingHomClass : RingHomClass (α →+* β) α β where coe f
Mathlib_Algebra_Ring_Hom_Defs
case mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β g : α →+* β toMonoidHom✝ : α →* β map_zero'✝ : OneHom.toFun (↑toMonoidHom✝) 0 = 0 map_add'✝ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝) (x + y) = OneHom.toFun (↑toMonoidHom✝) x + OneHom.toFun (↑toMonoidHom✝) y h : (fun f => f.toFun) { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ } = (fun f => f.toFun) g ⊢ { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ } = g
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f
cases g
instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f
Mathlib.Algebra.Ring.Hom.Defs.416_0.KyHvVYrIs9pW9ZQ
instance instRingHomClass : RingHomClass (α →+* β) α β where coe f
Mathlib_Algebra_Ring_Hom_Defs
case mk.mk F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β toMonoidHom✝¹ : α →* β map_zero'✝¹ : OneHom.toFun (↑toMonoidHom✝¹) 0 = 0 map_add'✝¹ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝¹) (x + y) = OneHom.toFun (↑toMonoidHom✝¹) x + OneHom.toFun (↑toMonoidHom✝¹) y toMonoidHom✝ : α →* β map_zero'✝ : OneHom.toFun (↑toMonoidHom✝) 0 = 0 map_add'✝ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝) (x + y) = OneHom.toFun (↑toMonoidHom✝) x + OneHom.toFun (↑toMonoidHom✝) y h : (fun f => f.toFun) { toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = (fun f => f.toFun) { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ } ⊢ { toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g
congr
instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g
Mathlib.Algebra.Ring.Hom.Defs.416_0.KyHvVYrIs9pW9ZQ
instance instRingHomClass : RingHomClass (α →+* β) α β where coe f
Mathlib_Algebra_Ring_Hom_Defs
case mk.mk.e_toMonoidHom F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β toMonoidHom✝¹ : α →* β map_zero'✝¹ : OneHom.toFun (↑toMonoidHom✝¹) 0 = 0 map_add'✝¹ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝¹) (x + y) = OneHom.toFun (↑toMonoidHom✝¹) x + OneHom.toFun (↑toMonoidHom✝¹) y toMonoidHom✝ : α →* β map_zero'✝ : OneHom.toFun (↑toMonoidHom✝) 0 = 0 map_add'✝ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝) (x + y) = OneHom.toFun (↑toMonoidHom✝) x + OneHom.toFun (↑toMonoidHom✝) y h : (fun f => f.toFun) { toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = (fun f => f.toFun) { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ } ⊢ toMonoidHom✝¹ = toMonoidHom✝
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr
apply FunLike.coe_injective'
instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr
Mathlib.Algebra.Ring.Hom.Defs.416_0.KyHvVYrIs9pW9ZQ
instance instRingHomClass : RingHomClass (α →+* β) α β where coe f
Mathlib_Algebra_Ring_Hom_Defs
case mk.mk.e_toMonoidHom.a F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β toMonoidHom✝¹ : α →* β map_zero'✝¹ : OneHom.toFun (↑toMonoidHom✝¹) 0 = 0 map_add'✝¹ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝¹) (x + y) = OneHom.toFun (↑toMonoidHom✝¹) x + OneHom.toFun (↑toMonoidHom✝¹) y toMonoidHom✝ : α →* β map_zero'✝ : OneHom.toFun (↑toMonoidHom✝) 0 = 0 map_add'✝ : ∀ (x y : α), OneHom.toFun (↑toMonoidHom✝) (x + y) = OneHom.toFun (↑toMonoidHom✝) x + OneHom.toFun (↑toMonoidHom✝) y h : (fun f => f.toFun) { toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ } = (fun f => f.toFun) { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ } ⊢ ⇑toMonoidHom✝¹ = ⇑toMonoidHom✝
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective'
exact h
instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective'
Mathlib.Algebra.Ring.Hom.Defs.416_0.KyHvVYrIs9pW9ZQ
instance instRingHomClass : RingHomClass (α →+* β) α β where coe f
Mathlib_Algebra_Ring_Hom_Defs
F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β f : α →+* β ⊢ ⇑(toMonoidWithZeroHom f) = ⇑f
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := RingHom.map_add' map_zero := RingHom.map_zero' map_mul f := f.map_mul' map_one f := f.map_one' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -- -/ -- instance : CoeFun (α →+* β) fun _ => α → β := -- ⟨RingHom.toFun⟩ initialize_simps_projections RingHom (toFun → apply) -- Porting note: is this lemma still needed in Lean4? -- Porting note: because `f.toFun` really means `f.toMonoidHom.toOneHom.toFun` and -- `toMonoidHom_eq_coe` wants to simplify `f.toMonoidHom` to `(↑f : M →* N)`, this can't -- be a simp lemma anymore -- @[simp] theorem toFun_eq_coe (f : α →+* β) : f.toFun = f := rfl #align ring_hom.to_fun_eq_coe RingHom.toFun_eq_coe @[simp] theorem coe_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α → β) = f := rfl #align ring_hom.coe_mk RingHom.coe_mk @[simp] theorem coe_coe {F : Type*} [RingHomClass F α β] (f : F) : ((f : α →+* β) : α → β) = f := rfl #align ring_hom.coe_coe RingHom.coe_coe attribute [coe] RingHom.toMonoidHom instance coeToMonoidHom : Coe (α →+* β) (α →* β) := ⟨RingHom.toMonoidHom⟩ #align ring_hom.has_coe_monoid_hom RingHom.coeToMonoidHom -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_monoid_hom @[simp] theorem toMonoidHom_eq_coe (f : α →+* β) : f.toMonoidHom = f := rfl #align ring_hom.to_monoid_hom_eq_coe RingHom.toMonoidHom_eq_coe -- Porting note: this can't be a simp lemma anymore -- @[simp] theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by
rfl
theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by
Mathlib.Algebra.Ring.Hom.Defs.474_0.KyHvVYrIs9pW9ZQ
theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f
Mathlib_Algebra_Ring_Hom_Defs
F✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β f✝ : α →+* β x y : α F : Type u_5 inst✝¹ : RingHomClass F α β f : F p : Prop inst✝ : Decidable p ⊢ f (if p then 0 else 1) = if p then 0 else 1
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := RingHom.map_add' map_zero := RingHom.map_zero' map_mul f := f.map_mul' map_one f := f.map_one' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -- -/ -- instance : CoeFun (α →+* β) fun _ => α → β := -- ⟨RingHom.toFun⟩ initialize_simps_projections RingHom (toFun → apply) -- Porting note: is this lemma still needed in Lean4? -- Porting note: because `f.toFun` really means `f.toMonoidHom.toOneHom.toFun` and -- `toMonoidHom_eq_coe` wants to simplify `f.toMonoidHom` to `(↑f : M →* N)`, this can't -- be a simp lemma anymore -- @[simp] theorem toFun_eq_coe (f : α →+* β) : f.toFun = f := rfl #align ring_hom.to_fun_eq_coe RingHom.toFun_eq_coe @[simp] theorem coe_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α → β) = f := rfl #align ring_hom.coe_mk RingHom.coe_mk @[simp] theorem coe_coe {F : Type*} [RingHomClass F α β] (f : F) : ((f : α →+* β) : α → β) = f := rfl #align ring_hom.coe_coe RingHom.coe_coe attribute [coe] RingHom.toMonoidHom instance coeToMonoidHom : Coe (α →+* β) (α →* β) := ⟨RingHom.toMonoidHom⟩ #align ring_hom.has_coe_monoid_hom RingHom.coeToMonoidHom -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_monoid_hom @[simp] theorem toMonoidHom_eq_coe (f : α →+* β) : f.toMonoidHom = f := rfl #align ring_hom.to_monoid_hom_eq_coe RingHom.toMonoidHom_eq_coe -- Porting note: this can't be a simp lemma anymore -- @[simp] theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by rfl #align ring_hom.to_monoid_with_zero_hom_eq_coe RingHom.toMonoidWithZeroHom_eq_coe @[simp] theorem coe_monoidHom_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α →* β) = f := rfl #align ring_hom.coe_monoid_hom_mk RingHom.coe_monoidHom_mk -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_add_monoid_hom @[simp] theorem toAddMonoidHom_eq_coe (f : α →+* β) : f.toAddMonoidHom = f := rfl #align ring_hom.to_add_monoid_hom_eq_coe RingHom.toAddMonoidHom_eq_coe @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩ : α →+* β) : α →+ β) = ⟨⟨f, h₃⟩, h₄⟩ := rfl #align ring_hom.coe_add_monoid_hom_mk RingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ def copy (f : α →+* β) (f' : α → β) (h : f' = f) : α →+* β := { f.toMonoidWithZeroHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align ring_hom.copy RingHom.copy @[simp] theorem coe_copy (f : α →+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align ring_hom.coe_copy RingHom.coe_copy theorem copy_eq (f : α →+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align ring_hom.copy_eq RingHom.copy_eq end coe section variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} (f : α →+* β) {x y : α} theorem congr_fun {f g : α →+* β} (h : f = g) (x : α) : f x = g x := FunLike.congr_fun h x #align ring_hom.congr_fun RingHom.congr_fun theorem congr_arg (f : α →+* β) {x y : α} (h : x = y) : f x = f y := FunLike.congr_arg f h #align ring_hom.congr_arg RingHom.congr_arg theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := FunLike.coe_injective h #align ring_hom.coe_inj RingHom.coe_inj @[ext] theorem ext ⦃f g : α →+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align ring_hom.ext RingHom.ext theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align ring_hom.ext_iff RingHom.ext_iff @[simp] theorem mk_coe (f : α →+* β) (h₁ h₂ h₃ h₄) : RingHom.mk ⟨⟨f, h₁⟩, h₂⟩ h₃ h₄ = f := ext fun _ => rfl #align ring_hom.mk_coe RingHom.mk_coe theorem coe_addMonoidHom_injective : Injective (fun f : α →+* β => (f : α →+ β)) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align ring_hom.coe_add_monoid_hom_injective RingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_monoidHom_injective : Injective (fun f : α →+* β => (f : α →* β)) := fun _ _ h => ext <| MonoidHom.congr_fun h #align ring_hom.coe_monoid_hom_injective RingHom.coe_monoidHom_injective /-- Ring homomorphisms map zero to zero. -/ protected theorem map_zero (f : α →+* β) : f 0 = 0 := map_zero f #align ring_hom.map_zero RingHom.map_zero /-- Ring homomorphisms map one to one. -/ protected theorem map_one (f : α →+* β) : f 1 = 1 := map_one f #align ring_hom.map_one RingHom.map_one /-- Ring homomorphisms preserve addition. -/ protected theorem map_add (f : α →+* β) : ∀ a b, f (a + b) = f a + f b := map_add f #align ring_hom.map_add RingHom.map_add /-- Ring homomorphisms preserve multiplication. -/ protected theorem map_mul (f : α →+* β) : ∀ a b, f (a * b) = f a * f b := map_mul f #align ring_hom.map_mul RingHom.map_mul @[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by
split_ifs with h
@[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by
Mathlib.Algebra.Ring.Hom.Defs.573_0.KyHvVYrIs9pW9ZQ
@[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1
Mathlib_Algebra_Ring_Hom_Defs
case pos F✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β f✝ : α →+* β x y : α F : Type u_5 inst✝¹ : RingHomClass F α β f : F p : Prop inst✝ : Decidable p h : p ⊢ f 0 = 0
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := RingHom.map_add' map_zero := RingHom.map_zero' map_mul f := f.map_mul' map_one f := f.map_one' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -- -/ -- instance : CoeFun (α →+* β) fun _ => α → β := -- ⟨RingHom.toFun⟩ initialize_simps_projections RingHom (toFun → apply) -- Porting note: is this lemma still needed in Lean4? -- Porting note: because `f.toFun` really means `f.toMonoidHom.toOneHom.toFun` and -- `toMonoidHom_eq_coe` wants to simplify `f.toMonoidHom` to `(↑f : M →* N)`, this can't -- be a simp lemma anymore -- @[simp] theorem toFun_eq_coe (f : α →+* β) : f.toFun = f := rfl #align ring_hom.to_fun_eq_coe RingHom.toFun_eq_coe @[simp] theorem coe_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α → β) = f := rfl #align ring_hom.coe_mk RingHom.coe_mk @[simp] theorem coe_coe {F : Type*} [RingHomClass F α β] (f : F) : ((f : α →+* β) : α → β) = f := rfl #align ring_hom.coe_coe RingHom.coe_coe attribute [coe] RingHom.toMonoidHom instance coeToMonoidHom : Coe (α →+* β) (α →* β) := ⟨RingHom.toMonoidHom⟩ #align ring_hom.has_coe_monoid_hom RingHom.coeToMonoidHom -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_monoid_hom @[simp] theorem toMonoidHom_eq_coe (f : α →+* β) : f.toMonoidHom = f := rfl #align ring_hom.to_monoid_hom_eq_coe RingHom.toMonoidHom_eq_coe -- Porting note: this can't be a simp lemma anymore -- @[simp] theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by rfl #align ring_hom.to_monoid_with_zero_hom_eq_coe RingHom.toMonoidWithZeroHom_eq_coe @[simp] theorem coe_monoidHom_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α →* β) = f := rfl #align ring_hom.coe_monoid_hom_mk RingHom.coe_monoidHom_mk -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_add_monoid_hom @[simp] theorem toAddMonoidHom_eq_coe (f : α →+* β) : f.toAddMonoidHom = f := rfl #align ring_hom.to_add_monoid_hom_eq_coe RingHom.toAddMonoidHom_eq_coe @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩ : α →+* β) : α →+ β) = ⟨⟨f, h₃⟩, h₄⟩ := rfl #align ring_hom.coe_add_monoid_hom_mk RingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ def copy (f : α →+* β) (f' : α → β) (h : f' = f) : α →+* β := { f.toMonoidWithZeroHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align ring_hom.copy RingHom.copy @[simp] theorem coe_copy (f : α →+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align ring_hom.coe_copy RingHom.coe_copy theorem copy_eq (f : α →+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align ring_hom.copy_eq RingHom.copy_eq end coe section variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} (f : α →+* β) {x y : α} theorem congr_fun {f g : α →+* β} (h : f = g) (x : α) : f x = g x := FunLike.congr_fun h x #align ring_hom.congr_fun RingHom.congr_fun theorem congr_arg (f : α →+* β) {x y : α} (h : x = y) : f x = f y := FunLike.congr_arg f h #align ring_hom.congr_arg RingHom.congr_arg theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := FunLike.coe_injective h #align ring_hom.coe_inj RingHom.coe_inj @[ext] theorem ext ⦃f g : α →+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align ring_hom.ext RingHom.ext theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align ring_hom.ext_iff RingHom.ext_iff @[simp] theorem mk_coe (f : α →+* β) (h₁ h₂ h₃ h₄) : RingHom.mk ⟨⟨f, h₁⟩, h₂⟩ h₃ h₄ = f := ext fun _ => rfl #align ring_hom.mk_coe RingHom.mk_coe theorem coe_addMonoidHom_injective : Injective (fun f : α →+* β => (f : α →+ β)) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align ring_hom.coe_add_monoid_hom_injective RingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_monoidHom_injective : Injective (fun f : α →+* β => (f : α →* β)) := fun _ _ h => ext <| MonoidHom.congr_fun h #align ring_hom.coe_monoid_hom_injective RingHom.coe_monoidHom_injective /-- Ring homomorphisms map zero to zero. -/ protected theorem map_zero (f : α →+* β) : f 0 = 0 := map_zero f #align ring_hom.map_zero RingHom.map_zero /-- Ring homomorphisms map one to one. -/ protected theorem map_one (f : α →+* β) : f 1 = 1 := map_one f #align ring_hom.map_one RingHom.map_one /-- Ring homomorphisms preserve addition. -/ protected theorem map_add (f : α →+* β) : ∀ a b, f (a + b) = f a + f b := map_add f #align ring_hom.map_add RingHom.map_add /-- Ring homomorphisms preserve multiplication. -/ protected theorem map_mul (f : α →+* β) : ∀ a b, f (a * b) = f a * f b := map_mul f #align ring_hom.map_mul RingHom.map_mul @[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by split_ifs with h <;>
simp [h]
@[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by split_ifs with h <;>
Mathlib.Algebra.Ring.Hom.Defs.573_0.KyHvVYrIs9pW9ZQ
@[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1
Mathlib_Algebra_Ring_Hom_Defs
case neg F✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β f✝ : α →+* β x y : α F : Type u_5 inst✝¹ : RingHomClass F α β f : F p : Prop inst✝ : Decidable p h : ¬p ⊢ f 1 = 1
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := RingHom.map_add' map_zero := RingHom.map_zero' map_mul f := f.map_mul' map_one f := f.map_one' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -- -/ -- instance : CoeFun (α →+* β) fun _ => α → β := -- ⟨RingHom.toFun⟩ initialize_simps_projections RingHom (toFun → apply) -- Porting note: is this lemma still needed in Lean4? -- Porting note: because `f.toFun` really means `f.toMonoidHom.toOneHom.toFun` and -- `toMonoidHom_eq_coe` wants to simplify `f.toMonoidHom` to `(↑f : M →* N)`, this can't -- be a simp lemma anymore -- @[simp] theorem toFun_eq_coe (f : α →+* β) : f.toFun = f := rfl #align ring_hom.to_fun_eq_coe RingHom.toFun_eq_coe @[simp] theorem coe_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α → β) = f := rfl #align ring_hom.coe_mk RingHom.coe_mk @[simp] theorem coe_coe {F : Type*} [RingHomClass F α β] (f : F) : ((f : α →+* β) : α → β) = f := rfl #align ring_hom.coe_coe RingHom.coe_coe attribute [coe] RingHom.toMonoidHom instance coeToMonoidHom : Coe (α →+* β) (α →* β) := ⟨RingHom.toMonoidHom⟩ #align ring_hom.has_coe_monoid_hom RingHom.coeToMonoidHom -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_monoid_hom @[simp] theorem toMonoidHom_eq_coe (f : α →+* β) : f.toMonoidHom = f := rfl #align ring_hom.to_monoid_hom_eq_coe RingHom.toMonoidHom_eq_coe -- Porting note: this can't be a simp lemma anymore -- @[simp] theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by rfl #align ring_hom.to_monoid_with_zero_hom_eq_coe RingHom.toMonoidWithZeroHom_eq_coe @[simp] theorem coe_monoidHom_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α →* β) = f := rfl #align ring_hom.coe_monoid_hom_mk RingHom.coe_monoidHom_mk -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_add_monoid_hom @[simp] theorem toAddMonoidHom_eq_coe (f : α →+* β) : f.toAddMonoidHom = f := rfl #align ring_hom.to_add_monoid_hom_eq_coe RingHom.toAddMonoidHom_eq_coe @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩ : α →+* β) : α →+ β) = ⟨⟨f, h₃⟩, h₄⟩ := rfl #align ring_hom.coe_add_monoid_hom_mk RingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ def copy (f : α →+* β) (f' : α → β) (h : f' = f) : α →+* β := { f.toMonoidWithZeroHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align ring_hom.copy RingHom.copy @[simp] theorem coe_copy (f : α →+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align ring_hom.coe_copy RingHom.coe_copy theorem copy_eq (f : α →+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align ring_hom.copy_eq RingHom.copy_eq end coe section variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} (f : α →+* β) {x y : α} theorem congr_fun {f g : α →+* β} (h : f = g) (x : α) : f x = g x := FunLike.congr_fun h x #align ring_hom.congr_fun RingHom.congr_fun theorem congr_arg (f : α →+* β) {x y : α} (h : x = y) : f x = f y := FunLike.congr_arg f h #align ring_hom.congr_arg RingHom.congr_arg theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := FunLike.coe_injective h #align ring_hom.coe_inj RingHom.coe_inj @[ext] theorem ext ⦃f g : α →+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align ring_hom.ext RingHom.ext theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align ring_hom.ext_iff RingHom.ext_iff @[simp] theorem mk_coe (f : α →+* β) (h₁ h₂ h₃ h₄) : RingHom.mk ⟨⟨f, h₁⟩, h₂⟩ h₃ h₄ = f := ext fun _ => rfl #align ring_hom.mk_coe RingHom.mk_coe theorem coe_addMonoidHom_injective : Injective (fun f : α →+* β => (f : α →+ β)) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align ring_hom.coe_add_monoid_hom_injective RingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_monoidHom_injective : Injective (fun f : α →+* β => (f : α →* β)) := fun _ _ h => ext <| MonoidHom.congr_fun h #align ring_hom.coe_monoid_hom_injective RingHom.coe_monoidHom_injective /-- Ring homomorphisms map zero to zero. -/ protected theorem map_zero (f : α →+* β) : f 0 = 0 := map_zero f #align ring_hom.map_zero RingHom.map_zero /-- Ring homomorphisms map one to one. -/ protected theorem map_one (f : α →+* β) : f 1 = 1 := map_one f #align ring_hom.map_one RingHom.map_one /-- Ring homomorphisms preserve addition. -/ protected theorem map_add (f : α →+* β) : ∀ a b, f (a + b) = f a + f b := map_add f #align ring_hom.map_add RingHom.map_add /-- Ring homomorphisms preserve multiplication. -/ protected theorem map_mul (f : α →+* β) : ∀ a b, f (a * b) = f a * f b := map_mul f #align ring_hom.map_mul RingHom.map_mul @[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by split_ifs with h <;>
simp [h]
@[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by split_ifs with h <;>
Mathlib.Algebra.Ring.Hom.Defs.573_0.KyHvVYrIs9pW9ZQ
@[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1
Mathlib_Algebra_Ring_Hom_Defs
F✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β f✝ : α →+* β x y : α F : Type u_5 inst✝¹ : RingHomClass F α β f : F p : Prop inst✝ : Decidable p ⊢ f (if p then 1 else 0) = if p then 1 else 0
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := RingHom.map_add' map_zero := RingHom.map_zero' map_mul f := f.map_mul' map_one f := f.map_one' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -- -/ -- instance : CoeFun (α →+* β) fun _ => α → β := -- ⟨RingHom.toFun⟩ initialize_simps_projections RingHom (toFun → apply) -- Porting note: is this lemma still needed in Lean4? -- Porting note: because `f.toFun` really means `f.toMonoidHom.toOneHom.toFun` and -- `toMonoidHom_eq_coe` wants to simplify `f.toMonoidHom` to `(↑f : M →* N)`, this can't -- be a simp lemma anymore -- @[simp] theorem toFun_eq_coe (f : α →+* β) : f.toFun = f := rfl #align ring_hom.to_fun_eq_coe RingHom.toFun_eq_coe @[simp] theorem coe_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α → β) = f := rfl #align ring_hom.coe_mk RingHom.coe_mk @[simp] theorem coe_coe {F : Type*} [RingHomClass F α β] (f : F) : ((f : α →+* β) : α → β) = f := rfl #align ring_hom.coe_coe RingHom.coe_coe attribute [coe] RingHom.toMonoidHom instance coeToMonoidHom : Coe (α →+* β) (α →* β) := ⟨RingHom.toMonoidHom⟩ #align ring_hom.has_coe_monoid_hom RingHom.coeToMonoidHom -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_monoid_hom @[simp] theorem toMonoidHom_eq_coe (f : α →+* β) : f.toMonoidHom = f := rfl #align ring_hom.to_monoid_hom_eq_coe RingHom.toMonoidHom_eq_coe -- Porting note: this can't be a simp lemma anymore -- @[simp] theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by rfl #align ring_hom.to_monoid_with_zero_hom_eq_coe RingHom.toMonoidWithZeroHom_eq_coe @[simp] theorem coe_monoidHom_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α →* β) = f := rfl #align ring_hom.coe_monoid_hom_mk RingHom.coe_monoidHom_mk -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_add_monoid_hom @[simp] theorem toAddMonoidHom_eq_coe (f : α →+* β) : f.toAddMonoidHom = f := rfl #align ring_hom.to_add_monoid_hom_eq_coe RingHom.toAddMonoidHom_eq_coe @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩ : α →+* β) : α →+ β) = ⟨⟨f, h₃⟩, h₄⟩ := rfl #align ring_hom.coe_add_monoid_hom_mk RingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ def copy (f : α →+* β) (f' : α → β) (h : f' = f) : α →+* β := { f.toMonoidWithZeroHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align ring_hom.copy RingHom.copy @[simp] theorem coe_copy (f : α →+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align ring_hom.coe_copy RingHom.coe_copy theorem copy_eq (f : α →+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align ring_hom.copy_eq RingHom.copy_eq end coe section variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} (f : α →+* β) {x y : α} theorem congr_fun {f g : α →+* β} (h : f = g) (x : α) : f x = g x := FunLike.congr_fun h x #align ring_hom.congr_fun RingHom.congr_fun theorem congr_arg (f : α →+* β) {x y : α} (h : x = y) : f x = f y := FunLike.congr_arg f h #align ring_hom.congr_arg RingHom.congr_arg theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := FunLike.coe_injective h #align ring_hom.coe_inj RingHom.coe_inj @[ext] theorem ext ⦃f g : α →+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align ring_hom.ext RingHom.ext theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align ring_hom.ext_iff RingHom.ext_iff @[simp] theorem mk_coe (f : α →+* β) (h₁ h₂ h₃ h₄) : RingHom.mk ⟨⟨f, h₁⟩, h₂⟩ h₃ h₄ = f := ext fun _ => rfl #align ring_hom.mk_coe RingHom.mk_coe theorem coe_addMonoidHom_injective : Injective (fun f : α →+* β => (f : α →+ β)) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align ring_hom.coe_add_monoid_hom_injective RingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_monoidHom_injective : Injective (fun f : α →+* β => (f : α →* β)) := fun _ _ h => ext <| MonoidHom.congr_fun h #align ring_hom.coe_monoid_hom_injective RingHom.coe_monoidHom_injective /-- Ring homomorphisms map zero to zero. -/ protected theorem map_zero (f : α →+* β) : f 0 = 0 := map_zero f #align ring_hom.map_zero RingHom.map_zero /-- Ring homomorphisms map one to one. -/ protected theorem map_one (f : α →+* β) : f 1 = 1 := map_one f #align ring_hom.map_one RingHom.map_one /-- Ring homomorphisms preserve addition. -/ protected theorem map_add (f : α →+* β) : ∀ a b, f (a + b) = f a + f b := map_add f #align ring_hom.map_add RingHom.map_add /-- Ring homomorphisms preserve multiplication. -/ protected theorem map_mul (f : α →+* β) : ∀ a b, f (a * b) = f a * f b := map_mul f #align ring_hom.map_mul RingHom.map_mul @[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by split_ifs with h <;> simp [h] #align ring_hom.map_ite_zero_one RingHom.map_ite_zero_one @[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0 := by
split_ifs with h
@[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0 := by
Mathlib.Algebra.Ring.Hom.Defs.579_0.KyHvVYrIs9pW9ZQ
@[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0
Mathlib_Algebra_Ring_Hom_Defs
case pos F✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β f✝ : α →+* β x y : α F : Type u_5 inst✝¹ : RingHomClass F α β f : F p : Prop inst✝ : Decidable p h : p ⊢ f 1 = 1
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := RingHom.map_add' map_zero := RingHom.map_zero' map_mul f := f.map_mul' map_one f := f.map_one' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -- -/ -- instance : CoeFun (α →+* β) fun _ => α → β := -- ⟨RingHom.toFun⟩ initialize_simps_projections RingHom (toFun → apply) -- Porting note: is this lemma still needed in Lean4? -- Porting note: because `f.toFun` really means `f.toMonoidHom.toOneHom.toFun` and -- `toMonoidHom_eq_coe` wants to simplify `f.toMonoidHom` to `(↑f : M →* N)`, this can't -- be a simp lemma anymore -- @[simp] theorem toFun_eq_coe (f : α →+* β) : f.toFun = f := rfl #align ring_hom.to_fun_eq_coe RingHom.toFun_eq_coe @[simp] theorem coe_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α → β) = f := rfl #align ring_hom.coe_mk RingHom.coe_mk @[simp] theorem coe_coe {F : Type*} [RingHomClass F α β] (f : F) : ((f : α →+* β) : α → β) = f := rfl #align ring_hom.coe_coe RingHom.coe_coe attribute [coe] RingHom.toMonoidHom instance coeToMonoidHom : Coe (α →+* β) (α →* β) := ⟨RingHom.toMonoidHom⟩ #align ring_hom.has_coe_monoid_hom RingHom.coeToMonoidHom -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_monoid_hom @[simp] theorem toMonoidHom_eq_coe (f : α →+* β) : f.toMonoidHom = f := rfl #align ring_hom.to_monoid_hom_eq_coe RingHom.toMonoidHom_eq_coe -- Porting note: this can't be a simp lemma anymore -- @[simp] theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by rfl #align ring_hom.to_monoid_with_zero_hom_eq_coe RingHom.toMonoidWithZeroHom_eq_coe @[simp] theorem coe_monoidHom_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α →* β) = f := rfl #align ring_hom.coe_monoid_hom_mk RingHom.coe_monoidHom_mk -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_add_monoid_hom @[simp] theorem toAddMonoidHom_eq_coe (f : α →+* β) : f.toAddMonoidHom = f := rfl #align ring_hom.to_add_monoid_hom_eq_coe RingHom.toAddMonoidHom_eq_coe @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩ : α →+* β) : α →+ β) = ⟨⟨f, h₃⟩, h₄⟩ := rfl #align ring_hom.coe_add_monoid_hom_mk RingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ def copy (f : α →+* β) (f' : α → β) (h : f' = f) : α →+* β := { f.toMonoidWithZeroHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align ring_hom.copy RingHom.copy @[simp] theorem coe_copy (f : α →+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align ring_hom.coe_copy RingHom.coe_copy theorem copy_eq (f : α →+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align ring_hom.copy_eq RingHom.copy_eq end coe section variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} (f : α →+* β) {x y : α} theorem congr_fun {f g : α →+* β} (h : f = g) (x : α) : f x = g x := FunLike.congr_fun h x #align ring_hom.congr_fun RingHom.congr_fun theorem congr_arg (f : α →+* β) {x y : α} (h : x = y) : f x = f y := FunLike.congr_arg f h #align ring_hom.congr_arg RingHom.congr_arg theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := FunLike.coe_injective h #align ring_hom.coe_inj RingHom.coe_inj @[ext] theorem ext ⦃f g : α →+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align ring_hom.ext RingHom.ext theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align ring_hom.ext_iff RingHom.ext_iff @[simp] theorem mk_coe (f : α →+* β) (h₁ h₂ h₃ h₄) : RingHom.mk ⟨⟨f, h₁⟩, h₂⟩ h₃ h₄ = f := ext fun _ => rfl #align ring_hom.mk_coe RingHom.mk_coe theorem coe_addMonoidHom_injective : Injective (fun f : α →+* β => (f : α →+ β)) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align ring_hom.coe_add_monoid_hom_injective RingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_monoidHom_injective : Injective (fun f : α →+* β => (f : α →* β)) := fun _ _ h => ext <| MonoidHom.congr_fun h #align ring_hom.coe_monoid_hom_injective RingHom.coe_monoidHom_injective /-- Ring homomorphisms map zero to zero. -/ protected theorem map_zero (f : α →+* β) : f 0 = 0 := map_zero f #align ring_hom.map_zero RingHom.map_zero /-- Ring homomorphisms map one to one. -/ protected theorem map_one (f : α →+* β) : f 1 = 1 := map_one f #align ring_hom.map_one RingHom.map_one /-- Ring homomorphisms preserve addition. -/ protected theorem map_add (f : α →+* β) : ∀ a b, f (a + b) = f a + f b := map_add f #align ring_hom.map_add RingHom.map_add /-- Ring homomorphisms preserve multiplication. -/ protected theorem map_mul (f : α →+* β) : ∀ a b, f (a * b) = f a * f b := map_mul f #align ring_hom.map_mul RingHom.map_mul @[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by split_ifs with h <;> simp [h] #align ring_hom.map_ite_zero_one RingHom.map_ite_zero_one @[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0 := by split_ifs with h <;>
simp [h]
@[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0 := by split_ifs with h <;>
Mathlib.Algebra.Ring.Hom.Defs.579_0.KyHvVYrIs9pW9ZQ
@[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0
Mathlib_Algebra_Ring_Hom_Defs
case neg F✝ : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β f✝ : α →+* β x y : α F : Type u_5 inst✝¹ : RingHomClass F α β f : F p : Prop inst✝ : Decidable p h : ¬p ⊢ f 0 = 0
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := RingHom.map_add' map_zero := RingHom.map_zero' map_mul f := f.map_mul' map_one f := f.map_one' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -- -/ -- instance : CoeFun (α →+* β) fun _ => α → β := -- ⟨RingHom.toFun⟩ initialize_simps_projections RingHom (toFun → apply) -- Porting note: is this lemma still needed in Lean4? -- Porting note: because `f.toFun` really means `f.toMonoidHom.toOneHom.toFun` and -- `toMonoidHom_eq_coe` wants to simplify `f.toMonoidHom` to `(↑f : M →* N)`, this can't -- be a simp lemma anymore -- @[simp] theorem toFun_eq_coe (f : α →+* β) : f.toFun = f := rfl #align ring_hom.to_fun_eq_coe RingHom.toFun_eq_coe @[simp] theorem coe_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α → β) = f := rfl #align ring_hom.coe_mk RingHom.coe_mk @[simp] theorem coe_coe {F : Type*} [RingHomClass F α β] (f : F) : ((f : α →+* β) : α → β) = f := rfl #align ring_hom.coe_coe RingHom.coe_coe attribute [coe] RingHom.toMonoidHom instance coeToMonoidHom : Coe (α →+* β) (α →* β) := ⟨RingHom.toMonoidHom⟩ #align ring_hom.has_coe_monoid_hom RingHom.coeToMonoidHom -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_monoid_hom @[simp] theorem toMonoidHom_eq_coe (f : α →+* β) : f.toMonoidHom = f := rfl #align ring_hom.to_monoid_hom_eq_coe RingHom.toMonoidHom_eq_coe -- Porting note: this can't be a simp lemma anymore -- @[simp] theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by rfl #align ring_hom.to_monoid_with_zero_hom_eq_coe RingHom.toMonoidWithZeroHom_eq_coe @[simp] theorem coe_monoidHom_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α →* β) = f := rfl #align ring_hom.coe_monoid_hom_mk RingHom.coe_monoidHom_mk -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_add_monoid_hom @[simp] theorem toAddMonoidHom_eq_coe (f : α →+* β) : f.toAddMonoidHom = f := rfl #align ring_hom.to_add_monoid_hom_eq_coe RingHom.toAddMonoidHom_eq_coe @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩ : α →+* β) : α →+ β) = ⟨⟨f, h₃⟩, h₄⟩ := rfl #align ring_hom.coe_add_monoid_hom_mk RingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ def copy (f : α →+* β) (f' : α → β) (h : f' = f) : α →+* β := { f.toMonoidWithZeroHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align ring_hom.copy RingHom.copy @[simp] theorem coe_copy (f : α →+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align ring_hom.coe_copy RingHom.coe_copy theorem copy_eq (f : α →+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align ring_hom.copy_eq RingHom.copy_eq end coe section variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} (f : α →+* β) {x y : α} theorem congr_fun {f g : α →+* β} (h : f = g) (x : α) : f x = g x := FunLike.congr_fun h x #align ring_hom.congr_fun RingHom.congr_fun theorem congr_arg (f : α →+* β) {x y : α} (h : x = y) : f x = f y := FunLike.congr_arg f h #align ring_hom.congr_arg RingHom.congr_arg theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := FunLike.coe_injective h #align ring_hom.coe_inj RingHom.coe_inj @[ext] theorem ext ⦃f g : α →+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align ring_hom.ext RingHom.ext theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align ring_hom.ext_iff RingHom.ext_iff @[simp] theorem mk_coe (f : α →+* β) (h₁ h₂ h₃ h₄) : RingHom.mk ⟨⟨f, h₁⟩, h₂⟩ h₃ h₄ = f := ext fun _ => rfl #align ring_hom.mk_coe RingHom.mk_coe theorem coe_addMonoidHom_injective : Injective (fun f : α →+* β => (f : α →+ β)) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align ring_hom.coe_add_monoid_hom_injective RingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_monoidHom_injective : Injective (fun f : α →+* β => (f : α →* β)) := fun _ _ h => ext <| MonoidHom.congr_fun h #align ring_hom.coe_monoid_hom_injective RingHom.coe_monoidHom_injective /-- Ring homomorphisms map zero to zero. -/ protected theorem map_zero (f : α →+* β) : f 0 = 0 := map_zero f #align ring_hom.map_zero RingHom.map_zero /-- Ring homomorphisms map one to one. -/ protected theorem map_one (f : α →+* β) : f 1 = 1 := map_one f #align ring_hom.map_one RingHom.map_one /-- Ring homomorphisms preserve addition. -/ protected theorem map_add (f : α →+* β) : ∀ a b, f (a + b) = f a + f b := map_add f #align ring_hom.map_add RingHom.map_add /-- Ring homomorphisms preserve multiplication. -/ protected theorem map_mul (f : α →+* β) : ∀ a b, f (a * b) = f a * f b := map_mul f #align ring_hom.map_mul RingHom.map_mul @[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by split_ifs with h <;> simp [h] #align ring_hom.map_ite_zero_one RingHom.map_ite_zero_one @[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0 := by split_ifs with h <;>
simp [h]
@[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0 := by split_ifs with h <;>
Mathlib.Algebra.Ring.Hom.Defs.579_0.KyHvVYrIs9pW9ZQ
@[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0
Mathlib_Algebra_Ring_Hom_Defs
F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β f : α →+* β x y : α ⊢ 0 = 1 ↔ f 1 = 0
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := RingHom.map_add' map_zero := RingHom.map_zero' map_mul f := f.map_mul' map_one f := f.map_one' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -- -/ -- instance : CoeFun (α →+* β) fun _ => α → β := -- ⟨RingHom.toFun⟩ initialize_simps_projections RingHom (toFun → apply) -- Porting note: is this lemma still needed in Lean4? -- Porting note: because `f.toFun` really means `f.toMonoidHom.toOneHom.toFun` and -- `toMonoidHom_eq_coe` wants to simplify `f.toMonoidHom` to `(↑f : M →* N)`, this can't -- be a simp lemma anymore -- @[simp] theorem toFun_eq_coe (f : α →+* β) : f.toFun = f := rfl #align ring_hom.to_fun_eq_coe RingHom.toFun_eq_coe @[simp] theorem coe_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α → β) = f := rfl #align ring_hom.coe_mk RingHom.coe_mk @[simp] theorem coe_coe {F : Type*} [RingHomClass F α β] (f : F) : ((f : α →+* β) : α → β) = f := rfl #align ring_hom.coe_coe RingHom.coe_coe attribute [coe] RingHom.toMonoidHom instance coeToMonoidHom : Coe (α →+* β) (α →* β) := ⟨RingHom.toMonoidHom⟩ #align ring_hom.has_coe_monoid_hom RingHom.coeToMonoidHom -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_monoid_hom @[simp] theorem toMonoidHom_eq_coe (f : α →+* β) : f.toMonoidHom = f := rfl #align ring_hom.to_monoid_hom_eq_coe RingHom.toMonoidHom_eq_coe -- Porting note: this can't be a simp lemma anymore -- @[simp] theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by rfl #align ring_hom.to_monoid_with_zero_hom_eq_coe RingHom.toMonoidWithZeroHom_eq_coe @[simp] theorem coe_monoidHom_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α →* β) = f := rfl #align ring_hom.coe_monoid_hom_mk RingHom.coe_monoidHom_mk -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_add_monoid_hom @[simp] theorem toAddMonoidHom_eq_coe (f : α →+* β) : f.toAddMonoidHom = f := rfl #align ring_hom.to_add_monoid_hom_eq_coe RingHom.toAddMonoidHom_eq_coe @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩ : α →+* β) : α →+ β) = ⟨⟨f, h₃⟩, h₄⟩ := rfl #align ring_hom.coe_add_monoid_hom_mk RingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ def copy (f : α →+* β) (f' : α → β) (h : f' = f) : α →+* β := { f.toMonoidWithZeroHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align ring_hom.copy RingHom.copy @[simp] theorem coe_copy (f : α →+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align ring_hom.coe_copy RingHom.coe_copy theorem copy_eq (f : α →+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align ring_hom.copy_eq RingHom.copy_eq end coe section variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} (f : α →+* β) {x y : α} theorem congr_fun {f g : α →+* β} (h : f = g) (x : α) : f x = g x := FunLike.congr_fun h x #align ring_hom.congr_fun RingHom.congr_fun theorem congr_arg (f : α →+* β) {x y : α} (h : x = y) : f x = f y := FunLike.congr_arg f h #align ring_hom.congr_arg RingHom.congr_arg theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := FunLike.coe_injective h #align ring_hom.coe_inj RingHom.coe_inj @[ext] theorem ext ⦃f g : α →+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align ring_hom.ext RingHom.ext theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align ring_hom.ext_iff RingHom.ext_iff @[simp] theorem mk_coe (f : α →+* β) (h₁ h₂ h₃ h₄) : RingHom.mk ⟨⟨f, h₁⟩, h₂⟩ h₃ h₄ = f := ext fun _ => rfl #align ring_hom.mk_coe RingHom.mk_coe theorem coe_addMonoidHom_injective : Injective (fun f : α →+* β => (f : α →+ β)) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align ring_hom.coe_add_monoid_hom_injective RingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_monoidHom_injective : Injective (fun f : α →+* β => (f : α →* β)) := fun _ _ h => ext <| MonoidHom.congr_fun h #align ring_hom.coe_monoid_hom_injective RingHom.coe_monoidHom_injective /-- Ring homomorphisms map zero to zero. -/ protected theorem map_zero (f : α →+* β) : f 0 = 0 := map_zero f #align ring_hom.map_zero RingHom.map_zero /-- Ring homomorphisms map one to one. -/ protected theorem map_one (f : α →+* β) : f 1 = 1 := map_one f #align ring_hom.map_one RingHom.map_one /-- Ring homomorphisms preserve addition. -/ protected theorem map_add (f : α →+* β) : ∀ a b, f (a + b) = f a + f b := map_add f #align ring_hom.map_add RingHom.map_add /-- Ring homomorphisms preserve multiplication. -/ protected theorem map_mul (f : α →+* β) : ∀ a b, f (a * b) = f a * f b := map_mul f #align ring_hom.map_mul RingHom.map_mul @[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by split_ifs with h <;> simp [h] #align ring_hom.map_ite_zero_one RingHom.map_ite_zero_one @[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0 := by split_ifs with h <;> simp [h] #align ring_hom.map_ite_one_zero RingHom.map_ite_one_zero /-- `f : α →+* β` has a trivial codomain iff `f 1 = 0`. -/ theorem codomain_trivial_iff_map_one_eq_zero : (0 : β) = 1 ↔ f 1 = 0 := by
rw [map_one, eq_comm]
/-- `f : α →+* β` has a trivial codomain iff `f 1 = 0`. -/ theorem codomain_trivial_iff_map_one_eq_zero : (0 : β) = 1 ↔ f 1 = 0 := by
Mathlib.Algebra.Ring.Hom.Defs.585_0.KyHvVYrIs9pW9ZQ
/-- `f : α →+* β` has a trivial codomain iff `f 1 = 0`. -/ theorem codomain_trivial_iff_map_one_eq_zero : (0 : β) = 1 ↔ f 1 = 0
Mathlib_Algebra_Ring_Hom_Defs
F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝² : NonAssocSemiring α x✝¹ : NonAssocSemiring β f : α →+* β x✝ y : α h : f 1 = 0 x : α ⊢ f x = 0
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := RingHom.map_add' map_zero := RingHom.map_zero' map_mul f := f.map_mul' map_one f := f.map_one' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -- -/ -- instance : CoeFun (α →+* β) fun _ => α → β := -- ⟨RingHom.toFun⟩ initialize_simps_projections RingHom (toFun → apply) -- Porting note: is this lemma still needed in Lean4? -- Porting note: because `f.toFun` really means `f.toMonoidHom.toOneHom.toFun` and -- `toMonoidHom_eq_coe` wants to simplify `f.toMonoidHom` to `(↑f : M →* N)`, this can't -- be a simp lemma anymore -- @[simp] theorem toFun_eq_coe (f : α →+* β) : f.toFun = f := rfl #align ring_hom.to_fun_eq_coe RingHom.toFun_eq_coe @[simp] theorem coe_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α → β) = f := rfl #align ring_hom.coe_mk RingHom.coe_mk @[simp] theorem coe_coe {F : Type*} [RingHomClass F α β] (f : F) : ((f : α →+* β) : α → β) = f := rfl #align ring_hom.coe_coe RingHom.coe_coe attribute [coe] RingHom.toMonoidHom instance coeToMonoidHom : Coe (α →+* β) (α →* β) := ⟨RingHom.toMonoidHom⟩ #align ring_hom.has_coe_monoid_hom RingHom.coeToMonoidHom -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_monoid_hom @[simp] theorem toMonoidHom_eq_coe (f : α →+* β) : f.toMonoidHom = f := rfl #align ring_hom.to_monoid_hom_eq_coe RingHom.toMonoidHom_eq_coe -- Porting note: this can't be a simp lemma anymore -- @[simp] theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by rfl #align ring_hom.to_monoid_with_zero_hom_eq_coe RingHom.toMonoidWithZeroHom_eq_coe @[simp] theorem coe_monoidHom_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α →* β) = f := rfl #align ring_hom.coe_monoid_hom_mk RingHom.coe_monoidHom_mk -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_add_monoid_hom @[simp] theorem toAddMonoidHom_eq_coe (f : α →+* β) : f.toAddMonoidHom = f := rfl #align ring_hom.to_add_monoid_hom_eq_coe RingHom.toAddMonoidHom_eq_coe @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩ : α →+* β) : α →+ β) = ⟨⟨f, h₃⟩, h₄⟩ := rfl #align ring_hom.coe_add_monoid_hom_mk RingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ def copy (f : α →+* β) (f' : α → β) (h : f' = f) : α →+* β := { f.toMonoidWithZeroHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align ring_hom.copy RingHom.copy @[simp] theorem coe_copy (f : α →+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align ring_hom.coe_copy RingHom.coe_copy theorem copy_eq (f : α →+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align ring_hom.copy_eq RingHom.copy_eq end coe section variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} (f : α →+* β) {x y : α} theorem congr_fun {f g : α →+* β} (h : f = g) (x : α) : f x = g x := FunLike.congr_fun h x #align ring_hom.congr_fun RingHom.congr_fun theorem congr_arg (f : α →+* β) {x y : α} (h : x = y) : f x = f y := FunLike.congr_arg f h #align ring_hom.congr_arg RingHom.congr_arg theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := FunLike.coe_injective h #align ring_hom.coe_inj RingHom.coe_inj @[ext] theorem ext ⦃f g : α →+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align ring_hom.ext RingHom.ext theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align ring_hom.ext_iff RingHom.ext_iff @[simp] theorem mk_coe (f : α →+* β) (h₁ h₂ h₃ h₄) : RingHom.mk ⟨⟨f, h₁⟩, h₂⟩ h₃ h₄ = f := ext fun _ => rfl #align ring_hom.mk_coe RingHom.mk_coe theorem coe_addMonoidHom_injective : Injective (fun f : α →+* β => (f : α →+ β)) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align ring_hom.coe_add_monoid_hom_injective RingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_monoidHom_injective : Injective (fun f : α →+* β => (f : α →* β)) := fun _ _ h => ext <| MonoidHom.congr_fun h #align ring_hom.coe_monoid_hom_injective RingHom.coe_monoidHom_injective /-- Ring homomorphisms map zero to zero. -/ protected theorem map_zero (f : α →+* β) : f 0 = 0 := map_zero f #align ring_hom.map_zero RingHom.map_zero /-- Ring homomorphisms map one to one. -/ protected theorem map_one (f : α →+* β) : f 1 = 1 := map_one f #align ring_hom.map_one RingHom.map_one /-- Ring homomorphisms preserve addition. -/ protected theorem map_add (f : α →+* β) : ∀ a b, f (a + b) = f a + f b := map_add f #align ring_hom.map_add RingHom.map_add /-- Ring homomorphisms preserve multiplication. -/ protected theorem map_mul (f : α →+* β) : ∀ a b, f (a * b) = f a * f b := map_mul f #align ring_hom.map_mul RingHom.map_mul @[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by split_ifs with h <;> simp [h] #align ring_hom.map_ite_zero_one RingHom.map_ite_zero_one @[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0 := by split_ifs with h <;> simp [h] #align ring_hom.map_ite_one_zero RingHom.map_ite_one_zero /-- `f : α →+* β` has a trivial codomain iff `f 1 = 0`. -/ theorem codomain_trivial_iff_map_one_eq_zero : (0 : β) = 1 ↔ f 1 = 0 := by rw [map_one, eq_comm] #align ring_hom.codomain_trivial_iff_map_one_eq_zero RingHom.codomain_trivial_iff_map_one_eq_zero /-- `f : α →+* β` has a trivial codomain iff it has a trivial range. -/ theorem codomain_trivial_iff_range_trivial : (0 : β) = 1 ↔ ∀ x, f x = 0 := f.codomain_trivial_iff_map_one_eq_zero.trans ⟨fun h x => by
rw [← mul_one x, map_mul, h, mul_zero]
/-- `f : α →+* β` has a trivial codomain iff it has a trivial range. -/ theorem codomain_trivial_iff_range_trivial : (0 : β) = 1 ↔ ∀ x, f x = 0 := f.codomain_trivial_iff_map_one_eq_zero.trans ⟨fun h x => by
Mathlib.Algebra.Ring.Hom.Defs.589_0.KyHvVYrIs9pW9ZQ
/-- `f : α →+* β` has a trivial codomain iff it has a trivial range. -/ theorem codomain_trivial_iff_range_trivial : (0 : β) = 1 ↔ ∀ x, f x = 0
Mathlib_Algebra_Ring_Hom_Defs
F : Type u_1 α : Type u_2 β : Type u_3 γ : Type u_4 x✝¹ : NonAssocSemiring α x✝ : NonAssocSemiring β f : α →+* β x y : α inst✝ : Nontrivial β h : 1 = 0 ⊢ f 1 = 0
/- Copyright (c) 2019 Amelia Livingston. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Amelia Livingston, Jireh Loreaux -/ import Mathlib.Algebra.Ring.Defs import Mathlib.Algebra.Ring.Basic import Mathlib.Data.Pi.Algebra #align_import algebra.hom.ring from "leanprover-community/mathlib"@"cf9386b56953fb40904843af98b7a80757bbe7f9" /-! # Homomorphisms of semirings and rings This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure `RingHom a β`, a.k.a. `α →+* β`, for both types of homomorphisms. ## Main definitions * `NonUnitalRingHom`: Non-unital (semi)ring homomorphisms. Additive monoid homomorphism which preserve multiplication. * `RingHom`: (Semi)ring homomorphisms. Monoid homomorphisms which are also additive monoid homomorphism. ## Notations * `→ₙ+*`: Non-unital (semi)ring homs * `→+*`: (Semi)ring homs ## Implementation notes * There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. * There is no `SemiringHom` -- the idea is that `RingHom` is used. The constructor for a `RingHom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `RingHom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. ## Tags `RingHom`, `SemiringHom` -/ open Function variable {F α β γ : Type*} /-- Bundled non-unital semiring homomorphisms `α →ₙ+* β`; use this for bundled non-unital ring homomorphisms too. When possible, instead of parametrizing results over `(f : α →ₙ+* β)`, you should parametrize over `(F : Type*) [NonUnitalRingHomClass F α β] (f : F)`. When you extend this structure, make sure to extend `NonUnitalRingHomClass`. -/ structure NonUnitalRingHom (α β : Type*) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β #align non_unital_ring_hom NonUnitalRingHom /-- `α →ₙ+* β` denotes the type of non-unital ring homomorphisms from `α` to `β`. -/ infixr:25 " →ₙ+* " => NonUnitalRingHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as a semigroup homomorphism `α →ₙ* β`. The `simp`-normal form is `(f : α →ₙ* β)`. -/ add_decl_doc NonUnitalRingHom.toMulHom #align non_unital_ring_hom.to_mul_hom NonUnitalRingHom.toMulHom /-- Reinterpret a non-unital ring homomorphism `f : α →ₙ+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc NonUnitalRingHom.toAddMonoidHom #align non_unital_ring_hom.to_add_monoid_hom NonUnitalRingHom.toAddMonoidHom section NonUnitalRingHomClass /-- `NonUnitalRingHomClass F α β` states that `F` is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend `NonUnitalRingHom`. -/ class NonUnitalRingHomClass (F : Type*) (α β : outParam (Type*)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends MulHomClass F α β, AddMonoidHomClass F α β #align non_unital_ring_hom_class NonUnitalRingHomClass variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalRingHomClass F α β] /-- Turn an element of a type `F` satisfying `NonUnitalRingHomClass F α β` into an actual `NonUnitalRingHom`. This is declared as the default coercion from `F` to `α →ₙ+* β`. -/ @[coe] def NonUnitalRingHomClass.toNonUnitalRingHom (f : F) : α →ₙ+* β := { (f : α →ₙ* β), (f : α →+ β) with } /-- Any type satisfying `NonUnitalRingHomClass` can be cast into `NonUnitalRingHom` via `NonUnitalRingHomClass.toNonUnitalRingHom`. -/ instance : CoeTC F (α →ₙ+* β) := ⟨NonUnitalRingHomClass.toNonUnitalRingHom⟩ end NonUnitalRingHomClass namespace NonUnitalRingHom section coe variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] instance : NonUnitalRingHomClass (α →ₙ+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := NonUnitalRingHom.map_add' map_zero := NonUnitalRingHom.map_zero' map_mul f := f.map_mul' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -/ -- instance : CoeFun (α →ₙ+* β) fun _ => α → β := -- ⟨fun f => f.toFun⟩ -- Porting note: removed due to new `coe` in Lean4 #noalign non_unital_ring_hom.to_fun_eq_coe #noalign non_unital_ring_hom.coe_mk #noalign non_unital_ring_hom.coe_coe initialize_simps_projections NonUnitalRingHom (toFun → apply) @[simp] theorem coe_toMulHom (f : α →ₙ+* β) : ⇑f.toMulHom = f := rfl #align non_unital_ring_hom.coe_to_mul_hom NonUnitalRingHom.coe_toMulHom @[simp] theorem coe_mulHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →ₙ* β) = ⟨f, h₁⟩ := rfl #align non_unital_ring_hom.coe_mul_hom_mk NonUnitalRingHom.coe_mulHom_mk theorem coe_toAddMonoidHom (f : α →ₙ+* β) : ⇑f.toAddMonoidHom = f := rfl #align non_unital_ring_hom.coe_to_add_monoid_hom NonUnitalRingHom.coe_toAddMonoidHom @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃) : ((⟨⟨f, h₁⟩, h₂, h₃⟩ : α →ₙ+* β) : α →+ β) = ⟨⟨f, h₂⟩, h₃⟩ := rfl #align non_unital_ring_hom.coe_add_monoid_hom_mk NonUnitalRingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ protected def copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : α →ₙ+* β := { f.toMulHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align non_unital_ring_hom.copy NonUnitalRingHom.copy @[simp] theorem coe_copy (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align non_unital_ring_hom.coe_copy NonUnitalRingHom.coe_copy theorem copy_eq (f : α →ₙ+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align non_unital_ring_hom.copy_eq NonUnitalRingHom.copy_eq end coe section variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] variable (f : α →ₙ+* β) {x y : α} @[ext] theorem ext ⦃f g : α →ₙ+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align non_unital_ring_hom.ext NonUnitalRingHom.ext theorem ext_iff {f g : α →ₙ+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align non_unital_ring_hom.ext_iff NonUnitalRingHom.ext_iff @[simp] theorem mk_coe (f : α →ₙ+* β) (h₁ h₂ h₃) : NonUnitalRingHom.mk (MulHom.mk f h₁) h₂ h₃ = f := ext fun _ => rfl #align non_unital_ring_hom.mk_coe NonUnitalRingHom.mk_coe theorem coe_addMonoidHom_injective : Injective fun f : α →ₙ+* β => (f : α →+ β) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align non_unital_ring_hom.coe_add_monoid_hom_injective NonUnitalRingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_mulHom_injective : Injective fun f : α →ₙ+* β => (f : α →ₙ* β) := fun _ _ h => ext <| MulHom.congr_fun h #align non_unital_ring_hom.coe_mul_hom_injective NonUnitalRingHom.coe_mulHom_injective end variable [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] /-- The identity non-unital ring homomorphism from a non-unital semiring to itself. -/ protected def id (α : Type*) [NonUnitalNonAssocSemiring α] : α →ₙ+* α := by refine' { toFun := id.. } <;> intros <;> rfl #align non_unital_ring_hom.id NonUnitalRingHom.id instance : Zero (α →ₙ+* β) := ⟨{ toFun := 0, map_mul' := fun _ _ => (mul_zero (0 : β)).symm, map_zero' := rfl, map_add' := fun _ _ => (add_zero (0 : β)).symm }⟩ instance : Inhabited (α →ₙ+* β) := ⟨0⟩ @[simp] theorem coe_zero : ⇑(0 : α →ₙ+* β) = 0 := rfl #align non_unital_ring_hom.coe_zero NonUnitalRingHom.coe_zero @[simp] theorem zero_apply (x : α) : (0 : α →ₙ+* β) x = 0 := rfl #align non_unital_ring_hom.zero_apply NonUnitalRingHom.zero_apply @[simp] theorem id_apply (x : α) : NonUnitalRingHom.id α x = x := rfl #align non_unital_ring_hom.id_apply NonUnitalRingHom.id_apply @[simp] theorem coe_addMonoidHom_id : (NonUnitalRingHom.id α : α →+ α) = AddMonoidHom.id α := rfl #align non_unital_ring_hom.coe_add_monoid_hom_id NonUnitalRingHom.coe_addMonoidHom_id @[simp] theorem coe_mulHom_id : (NonUnitalRingHom.id α : α →ₙ* α) = MulHom.id α := rfl #align non_unital_ring_hom.coe_mul_hom_id NonUnitalRingHom.coe_mulHom_id variable [NonUnitalNonAssocSemiring γ] /-- Composition of non-unital ring homomorphisms is a non-unital ring homomorphism. -/ def comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : α →ₙ+* γ := { g.toMulHom.comp f.toMulHom, g.toAddMonoidHom.comp f.toAddMonoidHom with } #align non_unital_ring_hom.comp NonUnitalRingHom.comp /-- Composition of non-unital ring homomorphisms is associative. -/ theorem comp_assoc {δ} {_ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl #align non_unital_ring_hom.comp_assoc NonUnitalRingHom.comp_assoc @[simp] theorem coe_comp (g : β →ₙ+* γ) (f : α →ₙ+* β) : ⇑(g.comp f) = g ∘ f := rfl #align non_unital_ring_hom.coe_comp NonUnitalRingHom.coe_comp @[simp] theorem comp_apply (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) : g.comp f x = g (f x) := rfl #align non_unital_ring_hom.comp_apply NonUnitalRingHom.comp_apply variable (g : β →ₙ+* γ) (f : α →ₙ+* β) @[simp] theorem coe_comp_addMonoidHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : AddMonoidHom.mk ⟨g ∘ f, (g.comp f).map_zero'⟩ (g.comp f).map_add' = (g : β →+ γ).comp f := rfl #align non_unital_ring_hom.coe_comp_add_monoid_hom NonUnitalRingHom.coe_comp_addMonoidHom @[simp] theorem coe_comp_mulHom (g : β →ₙ+* γ) (f : α →ₙ+* β) : MulHom.mk (g ∘ f) (g.comp f).map_mul' = (g : β →ₙ* γ).comp f := rfl #align non_unital_ring_hom.coe_comp_mul_hom NonUnitalRingHom.coe_comp_mulHom @[simp] theorem comp_zero (g : β →ₙ+* γ) : g.comp (0 : α →ₙ+* β) = 0 := by ext simp #align non_unital_ring_hom.comp_zero NonUnitalRingHom.comp_zero @[simp] theorem zero_comp (f : α →ₙ+* β) : (0 : β →ₙ+* γ).comp f = 0 := by ext rfl #align non_unital_ring_hom.zero_comp NonUnitalRingHom.zero_comp @[simp] theorem comp_id (f : α →ₙ+* β) : f.comp (NonUnitalRingHom.id α) = f := ext fun _ => rfl #align non_unital_ring_hom.comp_id NonUnitalRingHom.comp_id @[simp] theorem id_comp (f : α →ₙ+* β) : (NonUnitalRingHom.id β).comp f = f := ext fun _ => rfl #align non_unital_ring_hom.id_comp NonUnitalRingHom.id_comp instance : MonoidWithZero (α →ₙ+* α) where one := NonUnitalRingHom.id α mul := comp mul_one := comp_id one_mul := id_comp mul_assoc f g h := comp_assoc _ _ _ zero := 0 mul_zero := comp_zero zero_mul := zero_comp theorem one_def : (1 : α →ₙ+* α) = NonUnitalRingHom.id α := rfl #align non_unital_ring_hom.one_def NonUnitalRingHom.one_def @[simp] theorem coe_one : ⇑(1 : α →ₙ+* α) = id := rfl #align non_unital_ring_hom.coe_one NonUnitalRingHom.coe_one theorem mul_def (f g : α →ₙ+* α) : f * g = f.comp g := rfl #align non_unital_ring_hom.mul_def NonUnitalRingHom.mul_def @[simp] theorem coe_mul (f g : α →ₙ+* α) : ⇑(f * g) = f ∘ g := rfl #align non_unital_ring_hom.coe_mul NonUnitalRingHom.coe_mul @[simp] theorem cancel_right {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨fun h => ext <| hf.forall.2 (ext_iff.1 h), fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_right NonUnitalRingHom.cancel_right @[simp] theorem cancel_left {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨fun h => ext fun x => hg <| by rw [← comp_apply, h, comp_apply], fun h => h ▸ rfl⟩ #align non_unital_ring_hom.cancel_left NonUnitalRingHom.cancel_left end NonUnitalRingHom /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. This extends from both `MonoidHom` and `MonoidWithZeroHom` in order to put the fields in a sensible order, even though `MonoidWithZeroHom` already extends `MonoidHom`. -/ structure RingHom (α : Type*) (β : Type*) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β #align ring_hom RingHom /-- `α →+* β` denotes the type of ring homomorphisms from `α` to `β`. -/ infixr:25 " →+* " => RingHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid with zero homomorphism `α →*₀ β`. The `simp`-normal form is `(f : α →*₀ β)`. -/ add_decl_doc RingHom.toMonoidWithZeroHom #align ring_hom.to_monoid_with_zero_hom RingHom.toMonoidWithZeroHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a monoid homomorphism `α →* β`. The `simp`-normal form is `(f : α →* β)`. -/ add_decl_doc RingHom.toMonoidHom #align ring_hom.to_monoid_hom RingHom.toMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as an additive monoid homomorphism `α →+ β`. The `simp`-normal form is `(f : α →+ β)`. -/ add_decl_doc RingHom.toAddMonoidHom #align ring_hom.to_add_monoid_hom RingHom.toAddMonoidHom /-- Reinterpret a ring homomorphism `f : α →+* β` as a non-unital ring homomorphism `α →ₙ+* β`. The `simp`-normal form is `(f : α →ₙ+* β)`. -/ add_decl_doc RingHom.toNonUnitalRingHom #align ring_hom.to_non_unital_ring_hom RingHom.toNonUnitalRingHom section RingHomClass /-- `RingHomClass F α β` states that `F` is a type of (semi)ring homomorphisms. You should extend this class when you extend `RingHom`. This extends from both `MonoidHomClass` and `MonoidWithZeroHomClass` in order to put the fields in a sensible order, even though `MonoidWithZeroHomClass` already extends `MonoidHomClass`. -/ class RingHomClass (F : Type*) (α β : outParam (Type*)) [NonAssocSemiring α] [NonAssocSemiring β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β #align ring_hom_class RingHomClass set_option linter.deprecated false in /-- Ring homomorphisms preserve `bit1`. -/ @[simp] lemma map_bit1 [NonAssocSemiring α] [NonAssocSemiring β] [RingHomClass F α β] (f : F) (a : α) : (f (bit1 a) : β) = bit1 (f a) := by simp [bit1] #align map_bit1 map_bit1 -- Porting note: marked `{}` rather than `[]` to prevent dangerous instances variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} [RingHomClass F α β] /-- Turn an element of a type `F` satisfying `RingHomClass F α β` into an actual `RingHom`. This is declared as the default coercion from `F` to `α →+* β`. -/ @[coe] def RingHomClass.toRingHom (f : F) : α →+* β := { (f : α →* β), (f : α →+ β) with } /-- Any type satisfying `RingHomClass` can be cast into `RingHom` via `RingHomClass.toRingHom`. -/ instance : CoeTC F (α →+* β) := ⟨RingHomClass.toRingHom⟩ instance (priority := 100) RingHomClass.toNonUnitalRingHomClass : NonUnitalRingHomClass F α β := { ‹RingHomClass F α β› with } #align ring_hom_class.to_non_unital_ring_hom_class RingHomClass.toNonUnitalRingHomClass end RingHomClass namespace RingHom section coe /-! Throughout this section, some `Semiring` arguments are specified with `{}` instead of `[]`. See note [implicit instance arguments]. -/ variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} instance instRingHomClass : RingHomClass (α →+* β) α β where coe f := f.toFun coe_injective' f g h := by cases f cases g congr apply FunLike.coe_injective' exact h map_add := RingHom.map_add' map_zero := RingHom.map_zero' map_mul f := f.map_mul' map_one f := f.map_one' -- Porting note: -- These helper instances are unhelpful in Lean 4, so omitting: -- /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` -- directly. -- -/ -- instance : CoeFun (α →+* β) fun _ => α → β := -- ⟨RingHom.toFun⟩ initialize_simps_projections RingHom (toFun → apply) -- Porting note: is this lemma still needed in Lean4? -- Porting note: because `f.toFun` really means `f.toMonoidHom.toOneHom.toFun` and -- `toMonoidHom_eq_coe` wants to simplify `f.toMonoidHom` to `(↑f : M →* N)`, this can't -- be a simp lemma anymore -- @[simp] theorem toFun_eq_coe (f : α →+* β) : f.toFun = f := rfl #align ring_hom.to_fun_eq_coe RingHom.toFun_eq_coe @[simp] theorem coe_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α → β) = f := rfl #align ring_hom.coe_mk RingHom.coe_mk @[simp] theorem coe_coe {F : Type*} [RingHomClass F α β] (f : F) : ((f : α →+* β) : α → β) = f := rfl #align ring_hom.coe_coe RingHom.coe_coe attribute [coe] RingHom.toMonoidHom instance coeToMonoidHom : Coe (α →+* β) (α →* β) := ⟨RingHom.toMonoidHom⟩ #align ring_hom.has_coe_monoid_hom RingHom.coeToMonoidHom -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_monoid_hom @[simp] theorem toMonoidHom_eq_coe (f : α →+* β) : f.toMonoidHom = f := rfl #align ring_hom.to_monoid_hom_eq_coe RingHom.toMonoidHom_eq_coe -- Porting note: this can't be a simp lemma anymore -- @[simp] theorem toMonoidWithZeroHom_eq_coe (f : α →+* β) : (f.toMonoidWithZeroHom : α → β) = f := by rfl #align ring_hom.to_monoid_with_zero_hom_eq_coe RingHom.toMonoidWithZeroHom_eq_coe @[simp] theorem coe_monoidHom_mk (f : α →* β) (h₁ h₂) : ((⟨f, h₁, h₂⟩ : α →+* β) : α →* β) = f := rfl #align ring_hom.coe_monoid_hom_mk RingHom.coe_monoidHom_mk -- Porting note: `dsimp only` can prove this #noalign ring_hom.coe_add_monoid_hom @[simp] theorem toAddMonoidHom_eq_coe (f : α →+* β) : f.toAddMonoidHom = f := rfl #align ring_hom.to_add_monoid_hom_eq_coe RingHom.toAddMonoidHom_eq_coe @[simp] theorem coe_addMonoidHom_mk (f : α → β) (h₁ h₂ h₃ h₄) : ((⟨⟨⟨f, h₁⟩, h₂⟩, h₃, h₄⟩ : α →+* β) : α →+ β) = ⟨⟨f, h₃⟩, h₄⟩ := rfl #align ring_hom.coe_add_monoid_hom_mk RingHom.coe_addMonoidHom_mk /-- Copy of a `RingHom` with a new `toFun` equal to the old one. Useful to fix definitional equalities. -/ def copy (f : α →+* β) (f' : α → β) (h : f' = f) : α →+* β := { f.toMonoidWithZeroHom.copy f' h, f.toAddMonoidHom.copy f' h with } #align ring_hom.copy RingHom.copy @[simp] theorem coe_copy (f : α →+* β) (f' : α → β) (h : f' = f) : ⇑(f.copy f' h) = f' := rfl #align ring_hom.coe_copy RingHom.coe_copy theorem copy_eq (f : α →+* β) (f' : α → β) (h : f' = f) : f.copy f' h = f := FunLike.ext' h #align ring_hom.copy_eq RingHom.copy_eq end coe section variable {_ : NonAssocSemiring α} {_ : NonAssocSemiring β} (f : α →+* β) {x y : α} theorem congr_fun {f g : α →+* β} (h : f = g) (x : α) : f x = g x := FunLike.congr_fun h x #align ring_hom.congr_fun RingHom.congr_fun theorem congr_arg (f : α →+* β) {x y : α} (h : x = y) : f x = f y := FunLike.congr_arg f h #align ring_hom.congr_arg RingHom.congr_arg theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := FunLike.coe_injective h #align ring_hom.coe_inj RingHom.coe_inj @[ext] theorem ext ⦃f g : α →+* β⦄ : (∀ x, f x = g x) → f = g := FunLike.ext _ _ #align ring_hom.ext RingHom.ext theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := FunLike.ext_iff #align ring_hom.ext_iff RingHom.ext_iff @[simp] theorem mk_coe (f : α →+* β) (h₁ h₂ h₃ h₄) : RingHom.mk ⟨⟨f, h₁⟩, h₂⟩ h₃ h₄ = f := ext fun _ => rfl #align ring_hom.mk_coe RingHom.mk_coe theorem coe_addMonoidHom_injective : Injective (fun f : α →+* β => (f : α →+ β)) := fun _ _ h => ext <| FunLike.congr_fun (F := α →+ β) h #align ring_hom.coe_add_monoid_hom_injective RingHom.coe_addMonoidHom_injective set_option linter.deprecated false in theorem coe_monoidHom_injective : Injective (fun f : α →+* β => (f : α →* β)) := fun _ _ h => ext <| MonoidHom.congr_fun h #align ring_hom.coe_monoid_hom_injective RingHom.coe_monoidHom_injective /-- Ring homomorphisms map zero to zero. -/ protected theorem map_zero (f : α →+* β) : f 0 = 0 := map_zero f #align ring_hom.map_zero RingHom.map_zero /-- Ring homomorphisms map one to one. -/ protected theorem map_one (f : α →+* β) : f 1 = 1 := map_one f #align ring_hom.map_one RingHom.map_one /-- Ring homomorphisms preserve addition. -/ protected theorem map_add (f : α →+* β) : ∀ a b, f (a + b) = f a + f b := map_add f #align ring_hom.map_add RingHom.map_add /-- Ring homomorphisms preserve multiplication. -/ protected theorem map_mul (f : α →+* β) : ∀ a b, f (a * b) = f a * f b := map_mul f #align ring_hom.map_mul RingHom.map_mul @[simp] theorem map_ite_zero_one {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 0 1) = ite p 0 1 := by split_ifs with h <;> simp [h] #align ring_hom.map_ite_zero_one RingHom.map_ite_zero_one @[simp] theorem map_ite_one_zero {F : Type*} [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] : f (ite p 1 0) = ite p 1 0 := by split_ifs with h <;> simp [h] #align ring_hom.map_ite_one_zero RingHom.map_ite_one_zero /-- `f : α →+* β` has a trivial codomain iff `f 1 = 0`. -/ theorem codomain_trivial_iff_map_one_eq_zero : (0 : β) = 1 ↔ f 1 = 0 := by rw [map_one, eq_comm] #align ring_hom.codomain_trivial_iff_map_one_eq_zero RingHom.codomain_trivial_iff_map_one_eq_zero /-- `f : α →+* β` has a trivial codomain iff it has a trivial range. -/ theorem codomain_trivial_iff_range_trivial : (0 : β) = 1 ↔ ∀ x, f x = 0 := f.codomain_trivial_iff_map_one_eq_zero.trans ⟨fun h x => by rw [← mul_one x, map_mul, h, mul_zero], fun h => h 1⟩ #align ring_hom.codomain_trivial_iff_range_trivial RingHom.codomain_trivial_iff_range_trivial /-- `f : α →+* β` doesn't map `1` to `0` if `β` is nontrivial -/ theorem map_one_ne_zero [Nontrivial β] : f 1 ≠ 0 := mt f.codomain_trivial_iff_map_one_eq_zero.mpr zero_ne_one #align ring_hom.map_one_ne_zero RingHom.map_one_ne_zero /-- If there is a homomorphism `f : α →+* β` and `β` is nontrivial, then `α` is nontrivial. -/ theorem domain_nontrivial [Nontrivial β] : Nontrivial α := ⟨⟨1, 0, mt (fun h => show f 1 = 0 by
rw [h, map_zero]
/-- If there is a homomorphism `f : α →+* β` and `β` is nontrivial, then `α` is nontrivial. -/ theorem domain_nontrivial [Nontrivial β] : Nontrivial α := ⟨⟨1, 0, mt (fun h => show f 1 = 0 by
Mathlib.Algebra.Ring.Hom.Defs.600_0.KyHvVYrIs9pW9ZQ
/-- If there is a homomorphism `f : α →+* β` and `β` is nontrivial, then `α` is nontrivial. -/ theorem domain_nontrivial [Nontrivial β] : Nontrivial α
Mathlib_Algebra_Ring_Hom_Defs