AIGCodeGeek-DS-6.7B / README.md
Leon-Leee's picture
Upload LlamaForCausalLM
10aa5aa verified
|
raw
history blame
3.38 kB
metadata
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - code
datasets:
  - Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped
  - m-a-p/Code-Feedback
  - openbmb/UltraInteract_sft
  - ise-uiuc/Magicoder-Evol-Instruct-110K
  - flytech/python-codes-25k
metrics:
  - code_eval

AIGCodeGeek-DS-6.7B

Introduction

AIGCodeGeek-DS-6.7B is the first released version of our Code-LLM family with competitive performance on public and private benchmarks.

Model Details

Model Description

Training data

A mixture of samples from high-quality open-source (read Acknowledgements) and our private datasets. We have made contamination detection as Magicoder/Bigcode did.

Evaluation

results to be added.

Requirements

It should work with the same requirements as DeepSeek-Coder-6.7B or the following packages:

tokenizers>=0.14.0
transformers>=4.35.0
accelerate
sympy>=1.12
pebble 
timeout-decorator 
attrdict

QuickStart

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("aigcode/AIGCodeGeek-DS-6.7B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("aigcode/AIGCodeGeek-DS-6.7B", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
messages=[
    { 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
# tokenizer.eos_token_id is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))

Limits

Acknowledgements

We gain a lot of knowledge and resources from the open-source community: