|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- code |
|
datasets: |
|
- Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped |
|
- m-a-p/Code-Feedback |
|
- openbmb/UltraInteract_sft |
|
- ise-uiuc/Magicoder-Evol-Instruct-110K |
|
- flytech/python-codes-25k |
|
metrics: |
|
- code_eval |
|
--- |
|
## AIGCodeGeek-DS-6.7B |
|
|
|
### Introduction |
|
AIGCodeGeek-DS-6.7B is the first released version of our Code-LLM family with competitive performance on public and private benchmarks. |
|
|
|
### Model Details |
|
#### Model Description |
|
- Developed by: [Leon Li](https://huggingface.co/Leon-Leee) |
|
- License: [DeepSeek](https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL) |
|
- Fine-tuned from [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) with full parameters |
|
|
|
### Training data |
|
A mixture of samples from high-quality open-source (read *Acknowledgements*) and our private datasets. |
|
We have made contamination detection as Magicoder/Bigcode did. |
|
|
|
### Evaluation |
|
results to be added. |
|
|
|
### Requirements |
|
It should work with the same requirements as DeepSeek-Coder-6.7B or the following packages: |
|
|
|
```torch>=2.0 |
|
tokenizers>=0.14.0 |
|
transformers>=4.35.0 |
|
accelerate |
|
sympy>=1.12 |
|
pebble |
|
timeout-decorator |
|
attrdict |
|
``` |
|
|
|
|
|
### QuickStart |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("aigcode/AIGCodeGeek-DS-6.7B", trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained("aigcode/AIGCodeGeek-DS-6.7B", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() |
|
messages=[ |
|
{ 'role': 'user', 'content': "write a quick sort algorithm in python."} |
|
] |
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
# tokenizer.eos_token_id is the id of <|EOT|> token |
|
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) |
|
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) |
|
``` |
|
|
|
### Limits |
|
|
|
|
|
### Acknowledgements |
|
We gain a lot of knowledge and resources from the open-source community: |
|
- [DeepSeekCoder](https://huggingface.co/deepseek-ai): impressive model series and insightful tech reports |
|
- [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder): Evol Instruct and public datasets |
|
- We used a ([Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped](https://huggingface.co/datasets/Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped)) since this original has been deleted. |
|
- [Magicoder](https://github.com/ise-uiuc/magicoder/): OSS-Instruct, [Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K) from theblackcat102/evol-codealpaca-v1(https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1) |
|
- [Eurus](https://github.com/OpenBMB/Eurus): creative datasets for reasoning, [openbmb/UltraInteract_sft](https://huggingface.co/datasets/openbmb/UltraInteract_sft) |
|
- [OpenCoderInterpreter](https://opencodeinterpreter.github.io/): well-designed system and datasets [m-a-p/Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback) |
|
- [flytech/python-codes-25k](https://huggingface.co/datasets/flytech/python-codes-25k): diversity |
|
- [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory): easily used to finetune base models |